Nothing
library(BatchQC)
context("BatchQC functionality")
test_that("batchQC_analyze", {
nbatch <- 3
ncond <- 2
npercond <- 10
data.matrix <- rnaseq_sim(ngenes=50, nbatch=nbatch, ncond=ncond, npercond=
npercond, basemean=10000, ggstep=50, bbstep=2000, ccstep=800,
basedisp=100, bdispstep=-10, swvar=1000, seed=1234)
batch <- rep(1:nbatch, each=ncond*npercond)
pca <- batchQC_analyze(data.matrix, batch)
expect_equal(length(pca$x), 3000)
})
test_that("batchQC", {
nbatch <- 3
ncond <- 2
npercond <- 10
data.matrix <- rnaseq_sim(ngenes=50, nbatch=nbatch, ncond=ncond, npercond=
npercond, basemean=10000, ggstep=50, bbstep=2000, ccstep=800,
basedisp=100, bdispstep=-10, swvar=1000, seed=1234)
batch <- rep(1:nbatch, each=ncond*npercond)
condition <- rep(rep(1:ncond, each=npercond), nbatch)
outputfile <- batchQC(data.matrix, batch=batch, condition=condition,
view_report=FALSE, interactive=FALSE)
expect_equal(basename(outputfile), "batchqc_report.html")
})
test_that("combatPlot", {
nbatch <- 3
ncond <- 2
npercond <- 10
data.matrix <- rnaseq_sim(ngenes=50, nbatch=nbatch, ncond=ncond, npercond=
npercond, basemean=10000, ggstep=50, bbstep=2000, ccstep=800,
basedisp=100, bdispstep=-10, swvar=1000, seed=1234)
batch <- rep(1:nbatch, each=ncond*npercond)
condition <- rep(rep(1:ncond, each=npercond), nbatch)
pdata <- data.frame(batch, condition)
mod = model.matrix(~as.factor(condition), data = pdata)
kstest <- combatPlot(data.matrix, batch, mod=mod)
expect_equal(signif(kstest$p.value, 4), 0.8879)
})
test_that("batchQC_condition_adjusted", {
nbatch <- 3
ncond <- 2
npercond <- 10
data.matrix <- rnaseq_sim(ngenes=50, nbatch=nbatch, ncond=ncond, npercond=
npercond, basemean=10000, ggstep=50, bbstep=2000, ccstep=800,
basedisp=100, bdispstep=-10, swvar=1000, seed=1234)
batch <- rep(1:nbatch, each=ncond*npercond)
condition <- rep(rep(1:ncond, each=npercond), nbatch)
condition_adjusted <- batchQC_condition_adjusted(data.matrix, batch,
condition)
expect_equal(dim(data.matrix), dim(condition_adjusted))
})
test_that("batchqc_explained_variation", {
nbatch <- 3
ncond <- 2
npercond <- 10
data.matrix <- rnaseq_sim(ngenes=50, nbatch=nbatch, ncond=ncond, npercond=
npercond, basemean=10000, ggstep=50, bbstep=2000, ccstep=800,
basedisp=100, bdispstep=-10, swvar=1000, seed=1234)
batch <- rep(1:nbatch, each=ncond*npercond)
condition <- rep(rep(1:ncond, each=npercond), nbatch)
batchqc_ev <- batchqc_explained_variation(data.matrix, condition, batch)
expect_equal(dim(batchqc_ev$explained_variation), c(50,3))
})
test_that("batchqc_pc_explained_variation", {
nbatch <- 3
ncond <- 2
npercond <- 10
data.matrix <- rnaseq_sim(ngenes=50, nbatch=nbatch, ncond=ncond, npercond=
npercond, basemean=10000, ggstep=50, bbstep=2000, ccstep=800,
basedisp=100, bdispstep=-10, swvar=1000, seed=1234)
batch <- rep(1:nbatch, each=ncond*npercond)
condition <- rep(rep(1:ncond, each=npercond), nbatch)
pdata <- data.frame(batch, condition)
modmatrix = model.matrix(~as.factor(condition), data=pdata)
pca <- batchqc_pca(data.matrix, batch, mod=modmatrix)
pcs <- t(data.frame(pca$x))
explained_variation <- batchqc_pc_explained_variation(pcs, pca$sdev^2,
condition, batch)
expect_equal(dim(explained_variation), c(50,7))
})
test_that("log2CPM", {
nbatch <- 3
ncond <- 2
npercond <- 10
data.matrix <- rnaseq_sim(ngenes=50, nbatch=nbatch, ncond=ncond, npercond=
npercond, basemean=10000, ggstep=50, bbstep=2000, ccstep=800,
basedisp=100, bdispstep=-10, swvar=1000, seed=1234)
data.matrix <- as.matrix(data.matrix)
ld <- log2CPM(data.matrix)
expect_equal(dim(ld$y), dim(data.matrix))
expect_equal(length(ld$lib.size), dim(data.matrix)[2])
})
test_that("batchQC_num.sv", {
nbatch <- 3
ncond <- 2
npercond <- 10
data.matrix <- rnaseq_sim(ngenes=50, nbatch=nbatch, ncond=ncond, npercond=
npercond, basemean=10000, ggstep=50, bbstep=2000, ccstep=800,
basedisp=100, bdispstep=-10, swvar=1000, seed=1234)
batch <- rep(1:nbatch, each=ncond*npercond)
condition <- rep(rep(1:ncond, each=npercond), nbatch)
pdata <- data.frame(batch, condition)
modmatrix = model.matrix(~as.factor(condition), data=pdata)
num.sv <- batchQC_num.sv(data.matrix, modmatrix)
expect_equal(num.sv, 1)
})
test_that("batchQC_fsva_adjusted", {
nbatch <- 3
ncond <- 2
npercond <- 10
data.matrix <- rnaseq_sim(ngenes=50, nbatch=nbatch, ncond=ncond, npercond=
npercond, basemean=10000, ggstep=50, bbstep=2000, ccstep=800,
basedisp=100, bdispstep=-10, swvar=1000, seed=1234)
batch <- rep(1:nbatch, each=ncond*npercond)
condition <- rep(rep(1:ncond, each=npercond), nbatch)
pdata <- data.frame(batch, condition)
modmatrix = model.matrix(~as.factor(condition), data=pdata)
sva.object <- batchQC_sva(data.matrix, mod=modmatrix)
svaf_data <- batchQC_fsva_adjusted(data.matrix, modmatrix, sva.object)
expect_equal(dim(svaf_data), dim(data.matrix))
})
test_that("batchQC_svregress_adjusted", {
nbatch <- 3
ncond <- 2
npercond <- 10
data.matrix <- rnaseq_sim(ngenes=50, nbatch=nbatch, ncond=ncond, npercond=
npercond, basemean=10000, ggstep=50, bbstep=2000, ccstep=800,
basedisp=100, bdispstep=-10, swvar=1000, seed=1234)
batch <- rep(1:nbatch, each=ncond*npercond)
condition <- rep(rep(1:ncond, each=npercond), nbatch)
pdata <- data.frame(batch, condition)
modmatrix = model.matrix(~as.factor(condition), data=pdata)
sva.object <- batchQC_sva(data.matrix, mod=modmatrix)
svar_data <- batchQC_svregress_adjusted(data.matrix, modmatrix, sva.object)
expect_equal(dim(svar_data), dim(data.matrix))
})
test_that("batchQC_shapeVariation", {
nbatch <- 3
ncond <- 2
npercond <- 10
data.matrix <- rnaseq_sim(ngenes=50, nbatch=nbatch, ncond=ncond, npercond=
npercond, basemean=10000, ggstep=50, bbstep=2000, ccstep=800,
basedisp=100, bdispstep=-10, swvar=1000, seed=1234)
batch <- rep(1:nbatch, each=ncond*npercond)
sl <- batchQC_shapeVariation(data.matrix, groups=batch)
expect_equal(length(sl), 8)
})
test_that("batchqc_pca", {
nbatch <- 3
ncond <- 2
npercond <- 10
data.matrix <- rnaseq_sim(ngenes=50, nbatch=nbatch, ncond=ncond, npercond=
npercond, basemean=10000, ggstep=50, bbstep=2000, ccstep=800,
basedisp=100, bdispstep=-10, swvar=1000, seed=1234)
batch <- rep(1:nbatch, each=ncond*npercond)
condition <- rep(rep(1:ncond, each=npercond), nbatch)
pdata <- data.frame(batch, condition)
modmatrix = model.matrix(~as.factor(condition), data=pdata)
pca <- batchqc_pca(data.matrix, batch, mod=modmatrix)
expect_equal(length(pca$x), 3000)
})
test_that("batchqc_pca_svd", {
nbatch <- 3
ncond <- 2
npercond <- 10
data.matrix <- rnaseq_sim(ngenes=50, nbatch=nbatch, ncond=ncond, npercond=
npercond, basemean=10000, ggstep=50, bbstep=2000, ccstep=800,
basedisp=100, bdispstep=-10, swvar=1000, seed=1234)
batch <- rep(1:nbatch, each=ncond*npercond)
condition <- rep(rep(1:ncond, each=npercond), nbatch)
pdata <- data.frame(batch, condition)
modmatrix = model.matrix(~as.factor(condition), data=pdata)
res1 <- batchqc_pca_svd(data.matrix, batch, mod=modmatrix)
expect_equal(dim(res1), c(50,4))
})
test_that("batchtest", {
nbatch <- 3
ncond <- 2
npercond <- 10
data.matrix <- rnaseq_sim(ngenes=50, nbatch=nbatch, ncond=ncond, npercond=
npercond, basemean=10000, ggstep=50, bbstep=2000, ccstep=800,
basedisp=100, bdispstep=-10, swvar=1000, seed=1234)
batch <- rep(1:nbatch, each=ncond*npercond)
condition <- rep(rep(1:ncond, each=npercond), nbatch)
pdata <- data.frame(batch, condition)
modmatrix = model.matrix(~as.factor(condition), data=pdata)
pca <- batchqc_pca(data.matrix, batch, mod=modmatrix)
retval <- batchtest(pca, batch, mod=modmatrix)
expect_equal(length(retval), 55)
})
test_that("rnaseq_sim", {
nbatch <- 3
ncond <- 2
npercond <- 10
data.matrix <- rnaseq_sim(ngenes=100, nbatch=nbatch, ncond=ncond, npercond=
npercond, basemean=10000, ggstep=50, bbstep=2000, ccstep=800,
basedisp=100, bdispstep=-10, swvar=1000, seed=1234)
expect_equal(dim(data.matrix), c(100,60))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.