R/normalization.R

Defines functions subsampleBySpikeIn .norm_gr applyNFsGRanges spikeInNormGRanges .get_idx_ctrl .get_nf_srpmc .get_nf_snr getSpikeInNFs

Documented in applyNFsGRanges getSpikeInNFs spikeInNormGRanges subsampleBySpikeIn

#' Calculating spike-in normalization factors
#'
#' Use \code{getSpikeInNFs} to obtain the spike-in normalization factors, or
#' \code{spikeInNormGRanges} to return the input GRanges objects with their
#' readcounts spike-in normalized.
#'
#' @param dataset.gr A GRanges object, or (more typically) a list of GRanges
#'   objects.
#' @param si_pattern A regular expression that matches spike-in chromosomes. Can
#'   be used in addition to, or as an alternative to \code{si_names}.
#' @param si_names A character vector giving the names of the spike-in
#'   chromosomes. Can be used in addition to, or as an alternative to
#'   \code{si_pattern}.
#' @param method One of the shown methods, which generate normalization factors
#'   for converting raw readcounts into "Spike-in normalized Reads Per Million
#'   mapped in Control" (the default), "Spike-in Normalized Read counts", or
#'   "Reads Per Million mapped". See descriptions below.
#' @param batch_norm A logical indicating if batch normalization should be used
#'   (\code{TRUE} by default). See descriptions below. If batch normalization is
#'   used, sample names must end with "rep#", wherein "#" is one or more
#'   characters (usually a number) giving the replicate. If this is not the
#'   case, users can use the \code{sample_names} argument to make the names
#'   conform.
#' @param ctrl_pattern A regular expression that matches negative control sample
#'   names.
#' @param ctrl_names A character vector giving the names of the negative control
#'   samples. Can be used as an alternative to \code{ctrl_pattern}.
#' @param field The metadata field in \code{dataset.gr} that contains raw
#'   readcounts. If each range is an individual read, set \code{field = NULL}.
#' @param sample_names An optional character vector that can be used to rename
#'   the samples in \code{dataset.gr}. Intended use is if \code{dataset.gr} is
#'   an unnamed list, or if \code{batch_norm = TRUE} but the sample names don't
#'   conform to the required naming scheme.
#' @param expand_ranges Logical indicating if ranges in \code{dataset.gr} should
#'   be treated as descriptions of single molecules (\code{FALSE}), or if ranges
#'   should be treated as representing multiple adjacent positions with the same
#'   signal (\code{TRUE}). See \code{\link[BRGenomics:getCountsByRegions]{
#'   getCountsByRegions}}.
#' @param ncores The number of cores to use for computations.
#'
#' @return A numeric vector of normalization factors for each sample in
#'   \code{dataset.gr}. Normalization factors are to be applied by
#'   multiplication.
#'
#' @section Spike-in normalized Reads Per Million mapped in Control (SRPMC):
#'   This is the default spike-in normalization method, as its meaning is the
#'   most portable and generalizable. Experimental Reads Per Spike-in read (RPS)
#'   are calculated for each sample, \eqn{i}:
#'
#'   \deqn{RPS_i=\frac{experimental\_reads_i}{ spikein\_reads_i}}{RPS_i =
#'   experimental.reads_i / spikein.reads_i}
#'
#'   RPS for each sample is divided by RPS for the negative control, which
#'   measures the change in total material vs. the negative control. This global
#'   adjustment is applied to standard RPM normalization for each sample:
#'
#'   \deqn{NF_i=\frac{RPS_i}{RPS_{control}} \cdot \frac{1 x
#'   10^6}{experimental\_reads_i}}{ NF_i = (RPS_i / RPS_ctrl) x (1e6 /
#'   experimental.reads_i)}
#'
#'   Thus, the negative control(s) are simply RPM-normalized, while the other
#'   conditions are in equivalent, directly-comparable units ("Reads Per Million
#'   mapped reads in a negative control").
#'
#'   If \code{batch_norm = TRUE} (the default), all negative controls will be
#'   RPM-normalized, and the global changes in material for all other samples
#'   are calculated \emph{within each batch} (vs. the negative control within
#'   the same batch).
#'
#'   If \code{batch_norm = FALSE}, all samples are compared to the average RPS
#'   of the negative controls. This method can only be justified if batch has
#'   less effect on RPS than other sources of variation.
#'
#' @section Spike-in Normalized Reads (SNR): If \code{batch_norm = FALSE}, these
#'   normalization factors act to scale down the readcounts in each sample to
#'   make the spike-in read counts match the sample with the lowest number of
#'   spike-in reads:
#'
#'   \deqn{NF_i=\frac{min(spikein\_reads)}{spikein\_reads_i}}{ NF_i =
#'   min(spikein.reads) / spikein.reads_i}
#'
#'   If \code{batch_norm = TRUE}, such normalization factors are calculated
#'   within each batch, but a final batch (replicate) adjustment is performed
#'   that results in the negative controls having the same normalized
#'   readcounts. In this way, the negative controls are used to adjust the
#'   normalized readcounts of their entire replicate. Just as when
#'   \code{batch_norm = FALSE}, one of the normalization factors will be
#'   \code{1}, while the rest will be \code{<1}.
#'
#'   One use for these normalization factors is for normalizing-by-subsampling;
#'   see \code{\link[BRGenomics:subsampleBySpikeIn]{subsampleBySpikeIn}}.
#'
#' @section Reads Per Million mapped reads (RPM): A simple convenience wrapper
#'   for calculating normalization factors for RPM normalization:
#'
#'   \deqn{NF_i=\frac{1 x 10^6}{experimental\_reads_i}}{ NF_i = 1e6 /
#'   experimental.reads_i}
#'
#'   If spike-in reads are present, they're removed before the normalization
#'   factors are calculated.
#'
#' @author Mike DeBerardine
#' @seealso \code{\link[BRGenomics:getSpikeInCounts]{getSpikeInCounts}},
#'   \code{\link[BRGenomics:applyNFsGRanges]{applyNFsGRanges}},
#'   \code{\link[BRGenomics:subsampleBySpikeIn]{subsampleBySpikeIn}}
#' @export
#' @importFrom methods is
#'
#' @examples
#' #--------------------------------------------------#
#' # Make list of dummy GRanges
#' #--------------------------------------------------#
#' gr1_rep1 <- GRanges(seqnames = c("chr1", "chr2", "spikechr1", "spikechr2"),
#'                     ranges = IRanges(start = 1:4, width = 1),
#'                     strand = "+")
#' gr2_rep2 <- gr2_rep1 <- gr1_rep2 <- gr1_rep1
#'
#' # set readcounts
#' score(gr1_rep1) <- c(1, 1, 1, 1) # 2 exp + 2 spike = 4 total
#' score(gr2_rep1) <- c(2, 2, 1, 1) # 4 exp + 2 spike = 6 total
#' score(gr1_rep2) <- c(1, 1, 2, 1) # 2 exp + 3 spike = 5 total
#' score(gr2_rep2) <- c(4, 4, 2, 2) # 8 exp + 4 spike = 12 total
#'
#' grl <- list(gr1_rep1, gr2_rep1,
#'             gr1_rep2, gr2_rep2)
#' names(grl) <- c("gr1_rep1", "gr2_rep1",
#'                 "gr1_rep2", "gr2_rep2")
#'
#' grl
#'
#' #--------------------------------------------------#
#' # Get RPM NFs
#' #--------------------------------------------------#
#'
#' # can use the names of all spike-in chromosomes
#' getSpikeInNFs(grl, si_names = c("spikechr1", "spikechr2"),
#'               method = "RPM", ncores = 1)
#'
#' # or use a regular expression that matches the spike-in chromosome names
#' grep("spike", as.vector(seqnames(gr1_rep1)))
#'
#' getSpikeInNFs(grl, si_pattern = "spike", method = "RPM", ncores = 1)
#'
#'
#' #--------------------------------------------------#
#' # Get simple spike-in NFs ("SNR")
#' #--------------------------------------------------#
#'
#' # without batch normalization, NFs make all spike-in readcounts match
#' getSpikeInNFs(grl, si_pattern = "spike", ctrl_pattern = "gr1",
#'               method = "SNR", batch_norm = FALSE, ncores = 1)
#'
#' # with batch normalization, controls will have the same normalized counts;
#' # other samples are normalized to have same spike-in reads as their matched
#' # control
#' getSpikeInNFs(grl, si_pattern = "spike", ctrl_pattern = "gr1",
#'               method = "SNR", batch_norm = TRUE, ncores = 1)
#'
#' #--------------------------------------------------#
#' # Get spike-in NFs with more meaningful units ("RPMC")
#' #--------------------------------------------------#
#'
#' # compare to raw RPM NFs above; takes into account spike-in reads;
#' # units are directly comparable to the negative controls
#'
#' # with batch normalization, these negative controls are the same, as they
#' # have the same number of non-spike-in readcounts (they're simply RPM)
#' getSpikeInNFs(grl, si_pattern = "spike", ctrl_pattern = "gr1", ncores = 1)
#'
#' # batch_norm = FALSE, the average reads-per-spike-in for the negative
#' # controls are used to calculate all NFs; unless the controls have the exact
#' # same ratio of non-spike-in to spike-in reads, nothing is precisely RPM
#' getSpikeInNFs(grl, si_pattern = "spike", ctrl_pattern = "gr1",
#'               batch_norm = FALSE, ncores = 1)
#'
#' #--------------------------------------------------#
#' # Apply NFs to the GRanges
#' #--------------------------------------------------#
#'
#' spikeInNormGRanges(grl, si_pattern = "spike", ctrl_pattern = "gr1",
#'                    ncores = 1)
getSpikeInNFs <- function(dataset.gr, si_pattern = NULL, si_names = NULL,
                          method = c("SRPMC", "SNR", "RPM"), batch_norm = TRUE,
                          ctrl_pattern = NULL, ctrl_names = NULL,
                          field = "score", sample_names = NULL,
                          expand_ranges = FALSE,
                          ncores = getOption("mc.cores", 2L)) {

    method <- match.arg(method, c("SRPMC", "SNR", "RPM"))

    if (!is.list(dataset.gr) && !is(dataset.gr, "GRangesList")) {
        name_in <- deparse(substitute(dataset.gr))
        dataset.gr <- list(dataset.gr)
        names(dataset.gr) <- name_in
    }

    if (!is.null(sample_names))  names(dataset.gr) <- sample_names

    counts.df <- getSpikeInCounts(dataset.gr, si_pattern = si_pattern,
                                  si_names = si_names, field = field,
                                  sample_names = names(dataset.gr),
                                  expand_ranges = expand_ranges,
                                  ncores = ncores)

    if (method == "SRPMC") {
        .get_nf_srpmc(counts.df, ctrl_pattern, ctrl_names, batch_norm)
    } else if (method == "SNR") {
        .get_nf_snr(counts.df, ctrl_pattern, ctrl_names, batch_norm)
    } else {
        1e6L / counts.df$exp_reads # RPM normalize
    }
}



.get_nf_snr <- function(df, ctrl_pattern, ctrl_names, batch_norm) {

    if (!batch_norm) {
        return( min(df$spike_reads) / df$spike_reads )

    } else {
        srep <- sub(".*rep", "rep", df$sample)

        # 1. get spike-in NFs within each replicate;
        # 2. normalize the replicates to one another, based on the controls
        repnf <- snf <- rep.int(NA, nrow(df)) # initialize

        idx_ctrl <- .get_idx_ctrl(df, ctrl_pattern, ctrl_names)
        min_ctrl <- idx_ctrl[ which.min(df$exp_reads[idx_ctrl]) ]
        min_rep <- srep[min_ctrl] # batch with lowest control reads

        for (i in unique(srep)) {
            idx_i <- which(srep == i)
            idx_ci <- intersect(idx_i, idx_ctrl)
            spike_i <- df$spike_reads[idx_i]

            # get within-replicate spike-in NF
            snf[idx_i] <- min(spike_i) / spike_i

            # get across-replicate NF (based on negative controls)
            repnf[idx_i] <- df$exp_reads[min_ctrl] / df$exp_reads[idx_ci]
        }

        # multiply within-batch NF and across-batch NFs
        combnf <- snf * repnf

        # adjust NFs in case all are now less than 1
        return(combnf / max(combnf))
    }
}


.get_nf_srpmc <- function(counts.df, ctrl_pattern, ctrl_names, batch_norm) {
    idx_ctrl <- .get_idx_ctrl(counts.df, ctrl_pattern, ctrl_names)
    rps <- counts.df$exp_reads / counts.df$spike_reads

    if (batch_norm) {
        srep <- sub(".*rep", "rep", counts.df$sample)
        ratio_ctrl <- rep.int(NA, nrow(counts.df))
        for (i in unique(srep)) {
            idx_i <- which(srep == i)
            idx_ci <- intersect(idx_i, idx_ctrl)
            ratio_ctrl[idx_i] <- rps[idx_i] / rps[idx_ci]
        }
    } else {
        ctrl_avg <- mean(rps[idx_ctrl])
        ratio_ctrl <- rps / ctrl_avg
    }

    nf_rpm <- 1e6L / counts.df$exp_reads
    return(ratio_ctrl * nf_rpm)
}


.get_idx_ctrl <- function(counts.df, ctrl_pattern, ctrl_names) {
    .check_xor_args(ctrl_pattern, ctrl_names)
    if (is.null(ctrl_names))
        ctrl_names <- grep(ctrl_pattern, counts.df$sample, value = TRUE)
    which(counts.df$sample %in% ctrl_names)
}


#' @importFrom methods is
#' @rdname getSpikeInNFs
#' @export
spikeInNormGRanges <- function(dataset.gr, si_pattern = NULL, si_names = NULL,
                               method = c("SRPMC", "SNR", "RPM"),
                               batch_norm = TRUE, ctrl_pattern = NULL,
                               ctrl_names = NULL, field = "score",
                               sample_names = NULL, expand_ranges = FALSE,
                               ncores = getOption("mc.cores", 2L)) {

    if (!is.list(dataset.gr) && !is(dataset.gr, "GRangesList"))
        dataset.gr <- list(dataset.gr)

    if (!is.null(sample_names))
        names(dataset.gr) <- sample_names

    NF <- getSpikeInNFs(dataset.gr, si_pattern = si_pattern,
                        si_names = si_names, method = method,
                        batch_norm = batch_norm, ctrl_pattern = ctrl_pattern,
                        ctrl_names = ctrl_names, field = field,
                        sample_names = NULL, expand_ranges = expand_ranges,
                        ncores = ncores)

    dataset.gr <- removeSpikeInReads(dataset.gr, si_pattern, si_names, field,
                                     ncores)

    applyNFsGRanges(dataset.gr, NF = NF, field = field, ncores = ncores)
}



#' Apply normalization factors to GRanges object
#'
#' Convenience function for multiplying signal counts in one or more GRanges
#' object by their normalization factors.
#'
#' @param dataset.gr A GRanges object with signal data in one or more metadata
#'   fields, or a list of such GRanges objects.
#' @param NF One or more normalization factors to apply by multiplication. The
#'   number of normalization factors should match the number of datasets in
#'   \code{dataset.gr}.
#' @param field The metadata field(s) in \code{dataset.gr} that contain signal
#'   to be normalized.
#' @param ncores The number of cores to use for computations. Multicore only
#'   used if there are multiple datasets present.
#'
#' @return A GRanges object, or a list of GRanges objects.
#' @author Mike DeBerardine
#' @seealso \code{\link[BRGenomics:getSpikeInNFs]{getSpikeInNFs}}
#' @importFrom parallel mcMap
#' @importFrom methods is
#' @export
#'
#' @examples
#' # Apply NFs to a single GRanges
#' gr <- GRanges(seqnames = "chr1",
#'               ranges = IRanges(1:3, 3:5),
#'               strand = c("+", "+", "-"),
#'               score = c(2, 3, 4))
#' gr
#'
#' applyNFsGRanges(gr, NF = 0.5, ncores = 1)
#'
#' # Apply NFs to a list of GRanges
#' gr2 <- gr
#' ranges(gr2) <- IRanges(4:6, 5:7)
#' grl <- list(gr, gr2)
#' grl
#'
#' applyNFsGRanges(grl, NF = c(0.5, 0.75), ncores = 1)
#'
#' # Apply NFs to a multiplexed GRanges
#' gr_multi <- gr
#' names(mcols(gr_multi)) <- "gr1"
#' gr_multi$gr2 <- c(3, 5, 7)
#' gr_multi
#'
#' applyNFsGRanges(gr_multi, NF = c(2, 3), field = c("gr1", "gr2"),
#'                 ncores = 1)
applyNFsGRanges <- function(dataset.gr, NF, field = "score",
                            ncores = getOption("mc.cores", 2L)) {

    if (!is.list(dataset.gr) && !is(dataset.gr, "GRangesList"))
        dataset.gr <- list(dataset.gr)

    if (is.null(field)) {
        message(.nicemsg("With field = NULL, will calculate stranded coverage
                         before returning normalized GRanges"))
        dataset.gr <- mclapply(dataset.gr, getStrandedCoverage, field = NULL,
                               ncores = 1L, mc.cores = ncores)
        field <- "score"
    }

    if (length(dataset.gr) == 1L)
        return(.norm_gr(dataset.gr[[1L]], field, NF, ncores))

    mcMap(.norm_gr, dataset.gr, field, NF, ncores = 1L, mc.cores = ncores)
}

#' @importFrom parallel mcmapply
#' @importFrom GenomicRanges mcols<-
.norm_gr <- function(gr, field, nf, ncores) {
    # (supports multiplexed GRanges)
    mcols(gr)[field] <- mcmapply("*", mcols(gr)[field], nf, mc.cores = ncores)
    gr
}


#' Randomly subsample reads according to spike-in normalization
#'
#' @param
#' dataset.gr,si_pattern,si_names,ctrl_pattern,ctrl_names,batch_norm,field,sample_names,expand_ranges,ncores
#' See \code{\link[BRGenomics:getSpikeInNFs]{getSpikeInNFs}}
#' @param RPM_units If set to \code{TRUE}, the final readcount values will be
#'   converted to units equivalent to/directly comparable with \code{RPM} for
#'   the negative control(s). If \code{field = NULL}, the GRanges objects will
#'   be converted to disjoint
#'   \code{\link[BRGenomics:makeGRangesBRG]{"basepair-resolution"}} GRanges
#'   objects, with normalized readcounts contained in the "score" metadata
#'   column.
#'
#' @return An object parallel to \code{dataset.gr}, but with fewer reads. E.g.
#'   if \code{dataset.gr} is a list of GRanges, the output is a list of the same
#'   GRanges, but in which each GRanges has fewer reads.
#'
#' @details Note that if \code{field = NULL},
#' @author Mike DeBerardine
#'
#' @seealso \code{\link[BRGenomics:getSpikeInCounts]{getSpikeInCounts}},
#'   \code{\link[BRGenomics:getSpikeInNFs]{getSpikeInNFs}}
#'
#' @importFrom parallel mcMap
#' @export
#'
#' @examples
#' #--------------------------------------------------#
#' # Make list of dummy GRanges
#' #--------------------------------------------------#
#' gr1_rep1 <- GRanges(seqnames = c("chr1", "chr2", "spikechr1", "spikechr2"),
#'                     ranges = IRanges(start = 1:4, width = 1),
#'                     strand = "+")
#' gr2_rep2 <- gr2_rep1 <- gr1_rep2 <- gr1_rep1
#'
#' # set readcounts
#' score(gr1_rep1) <- c(1, 1, 1, 1) # 2 exp + 2 spike = 4 total
#' score(gr2_rep1) <- c(2, 2, 1, 1) # 4 exp + 2 spike = 6 total
#' score(gr1_rep2) <- c(1, 1, 2, 1) # 2 exp + 3 spike = 5 total
#' score(gr2_rep2) <- c(4, 4, 2, 2) # 8 exp + 4 spike = 12 total
#'
#' grl <- list(gr1_rep1, gr2_rep1,
#'             gr1_rep2, gr2_rep2)
#' names(grl) <- c("gr1_rep1", "gr2_rep1",
#'                 "gr1_rep2", "gr2_rep2")
#'
#' grl
#'
#' #--------------------------------------------------#
#' # (The simple spike-in NFs)
#' #--------------------------------------------------#
#'
#' # see examples for getSpikeInNFs for more
#' getSpikeInNFs(grl, si_pattern = "spike", ctrl_pattern = "gr1",
#'               method = "SNR", ncores = 1)
#'
#' #--------------------------------------------------#
#' # Subsample the GRanges according to the spike-in NFs
#' #--------------------------------------------------#
#'
#' ss <- subsampleBySpikeIn(grl, si_pattern = "spike", ctrl_pattern = "gr1",
#'                          ncores = 1)
#' ss
#'
#' lapply(ss, function(x) sum(score(x))) # total reads in each
#'
#' # Put in units of RPM for the negative control
#' ssr <- subsampleBySpikeIn(grl, si_pattern = "spike", ctrl_pattern = "gr1",
#'                           RPM_units = TRUE, ncores = 1)
#'
#' ssr
#'
#' lapply(ssr, function(x) sum(score(x))) # total signal in each
subsampleBySpikeIn <- function(dataset.gr, si_pattern = NULL, si_names = NULL,
                               ctrl_pattern = NULL, ctrl_names = NULL,
                               batch_norm = TRUE, RPM_units = FALSE,
                               field = "score", sample_names = NULL,
                               expand_ranges = FALSE,
                               ncores = getOption("mc.cores", 2L)) {

    if (!is.list(dataset.gr) && !is(dataset.gr, "GRangesList"))
        dataset.gr <- list(dataset.gr)
    if (!is.null(sample_names))
        names(dataset.gr) <- sample_names

    counts.df <- getSpikeInCounts(
        dataset.gr, si_pattern = si_pattern, si_names = si_names, field = field,
        sample_names = NULL, expand_ranges = expand_ranges, ncores = ncores
    )

    # get NFs for subsampling
    nf_snr <- .get_nf_snr(counts.df, ctrl_pattern, ctrl_names, batch_norm)
    nreads <- floor(counts.df$exp_reads * nf_snr)

    # remove spike-in reads and subsample
    dataset.gr <- removeSpikeInReads(dataset.gr, si_pattern = si_pattern,
                                     si_names = si_names, field = field,
                                     ncores = ncores)
    samples.gr <- subsampleGRanges(dataset.gr, n = nreads, field = field,
                                   expand_ranges = expand_ranges,
                                   ncores = ncores)
    if (RPM_units) {
        if (is.null(ctrl_pattern) && is.null(ctrl_names))
            stop(.nicemsg("Must give either ctrl_pattern or ctrl_names argument
                          if using the RPM_units option"))
        # get RPM NF for negative controls
        idx_ctrl <- .get_idx_ctrl(counts.df, ctrl_pattern, ctrl_names)
        nf_rpm <- 1e6L / mean(nreads[idx_ctrl])
        samples.gr <- applyNFsGRanges(samples.gr, NF = nf_rpm, field = field,
                                      ncores = ncores)
    }
    if (length(samples.gr) == 1L) samples.gr[[1L]] else samples.gr
}

Try the BRGenomics package in your browser

Any scripts or data that you put into this service are public.

BRGenomics documentation built on Nov. 8, 2020, 8:03 p.m.