Nothing
context("Parameter estimation + denoised data (no-spikes), original has no spikes")
test_that("Estimates match the given seed (no-spikes)", {
# Data example
set.seed(10)
Data <- makeExampleBASiCS_Data(
WithSpikes = FALSE,
WithBatch = TRUE
)
sce <- SingleCellExperiment::SingleCellExperiment(
assays = list(counts = counts(Data)),
colData = data.frame(
BatchInfo = SummarizedExperiment::colData(Data)$BatchInfo
)
)
# Fixing starting values
n <- ncol(Data)
PriorParam <- BASiCS_PriorParam(Data, k = 12)
# Running the sampler on Data and sce object
set.seed(14)
Chain <- run_MCMC(Data,
N = 1000,
Thin = 10,
Burn = 500,
PriorParam = PriorParam,
Regression = FALSE,
PrintProgress = FALSE,
WithSpikes = FALSE
)
set.seed(14)
ChainSCE <- run_MCMC(sce,
N = 1000,
Thin = 10,
Burn = 500,
PriorParam = PriorParam,
Regression = FALSE,
PrintProgress = FALSE,
WithSpikes = FALSE
)
# Calculating a posterior summary
PostSummary <- Summary(Chain)
PostSummarySCE <- Summary(ChainSCE)
# Checking parameter names
ParamNames <- c("mu", "delta", "s", "nu", "theta", "RefFreq")
ParamNames1 <- c("mu", "delta", "s", "nu", "theta")
expect_equal(names(Chain@parameters), ParamNames, tolerance = 1, scale = 1)
expect_equal(names(PostSummary@parameters), ParamNames1, tolerance = 1, scale = 1)
# Check if parameter estimates match for the first 5 genes and cells
Mu <- c(9.625, 14.665, 6.997, 8.724, 31.469)
MuObs <- as.vector(round(displaySummaryBASiCS(PostSummary, "mu")[1:5, 1], 3))
MuObsSCE <- as.vector(round(displaySummaryBASiCS(
PostSummarySCE,
"mu"
)[1:5, 1], 3))
expect_equal(MuObs, Mu, tolerance = 1, scale = 1)
expect_equal(MuObsSCE, Mu, tolerance = 1, scale = 1)
Delta <- c(1.234, 0.949, 1.710, 1.414, 0.440)
DeltaObs <- as.vector(round(displaySummaryBASiCS(
PostSummary,
"delta"
)[1:5, 1], 3))
DeltaObsSCE <- as.vector(round(displaySummaryBASiCS(
PostSummarySCE,
"delta"
)[1:5, 1], 3))
expect_equal(DeltaObs, Delta, tolerance = 1, scale = 1)
expect_equal(DeltaObsSCE, Delta, tolerance = 1, scale = 1)
S <- c(1.387, 1.552, 0.610, 2.184, 1.457)
SObs <- as.vector(round(displaySummaryBASiCS(PostSummary, "s")[1:5, 1], 3))
SObsSCE <- as.vector(round(displaySummaryBASiCS(
PostSummarySCE,
"s"
)[1:5, 1], 3))
expect_equal(SObs, S, tolerance = 1, scale = 1)
expect_equal(SObsSCE, S, tolerance = 1, scale = 1)
Theta <- c(0.120, 0.109)
ThetaObs <- as.vector(round(displaySummaryBASiCS(PostSummary, "theta")[, 1], 3))
ThetaObsSCE <- as.vector(round(displaySummaryBASiCS(
PostSummarySCE,
"theta"
)[, 1], 3))
expect_equal(ThetaObs, Theta, tolerance = 1, scale = 1)
expect_equal(ThetaObsSCE, Theta, tolerance = 1, scale = 1)
# Obtaining denoised counts
set.seed(2018)
DC <- BASiCS_DenoisedCounts(Data, Chain)
set.seed(2018)
DCSCE <- BASiCS_DenoisedCounts(sce, ChainSCE)
# Checks for an arbitrary set of genes / cells
DCcheck0 <- c(31.007, 21.633, 7.211, 3.605, 63.456)
DCcheck <- as.vector(round(DC[1:5, 1], 3))
DCSCEcheck <- as.vector(round(DCSCE[1:5, 1], 3))
expect_equal(DCcheck, DCcheck0, tolerance = 1, scale = 5)
expect_equal(DCSCEcheck, DCcheck0, tolerance = 1, scale = 1)
# Obtaining denoised rates
set.seed(2018)
DR <- BASiCS_DenoisedRates(Data, Chain)
set.seed(2018)
DRSCE <- BASiCS_DenoisedRates(sce, ChainSCE)
# Checks for an arbitrary set of genes / cells
DRcheck0 <- c(2.193, 2.981, 19.924, 15.005, 5.930)
DRcheck <- as.vector(round(DR[10, 1:5], 3))
DRSCEcheck <- as.vector(round(DRSCE[10, 1:5], 3))
expect_equal(DRcheck, DRcheck0, tolerance = 1, scale = 2)
expect_equal(DRSCEcheck, DRcheck0, tolerance = 1, scale = 2)
})
test_that("Chain creation works when StoreAdapt=TRUE (no spikes)", {
# Data example
set.seed(11)
Data <- makeExampleBASiCS_Data(
WithSpikes = FALSE,
WithBatch = TRUE
)
# Fixing starting values
# Running the sampler
set.seed(14)
Chain <- run_MCMC(Data,
N = 8, Thin = 2, Burn = 4,
Regression = FALSE, StoreAdapt = TRUE,
PrintProgress = FALSE, WithSpikes = FALSE
)
expect_s4_class(Chain, "BASiCS_Chain")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.