Nothing
context("Individual MCMC updates (cpp code)")
test_that("Dirichlet sampler", {
# Generating arbitrary hyper-param
phi0 <- 1:10
phi0 <- phi0 / sum(phi0)
set.seed(2018)
x <- as.vector(BASiCS:::.rDirichlet(phi0))
set.seed(2018)
x0 <- rgamma(length(phi0), shape = phi0, scale = 1)
x0 <- x0 / sum(x0)
expect_equal(x, x0)
})
test_that("Spikes + no regression", {
set.seed(3)
Data <- makeExampleBASiCS_Data(WithSpikes = TRUE)
CountsBio <- counts(Data)
CountsAll <- rbind(CountsBio, assay(altExp(Data, "spike-ins")))
q0 <- nrow(CountsBio)
n <- ncol(CountsBio)
PriorParam <- list(
mu.mu = rep(0, q0), s2.mu = 0.5, s2.delta = 0.5, a.delta = 1,
b.delta = 1, p.phi = rep(1, times = n),
a.s = 1, b.s = 1, a.theta = 1, b.theta = 1
)
set.seed(2018)
Start <- BASiCS:::.BASiCS_MCMC_Start(
Data,
PriorParam,
WithSpikes = TRUE,
Regression = FALSE)
uGene <- rep(0, times = q0)
indGene <- rbinom(q0, size = 1, prob = 0.5)
BatchDesign <- model.matrix(~ 0 + Data$BatchInfo)
ThetaBatch <- BatchDesign %*% Start$theta0
uCell <- rep(0, times = n)
indCell <- rbinom(n, size = 1, prob = 0.5)
mu1 <- pmax(0, Start$mu0[seq_len(q0)] + rnorm(q0, sd = 0.005))
mu <- BASiCS:::.muUpdate(
mu0 = Start$mu0,
prop_var = exp(Start$ls.mu0),
Counts = CountsBio,
invdelta = 1 / Start$delta0,
phinu = Start$phi0 * Start$nu0,
sum_bycell_bio = rowSums(CountsBio),
mu_mu = PriorParam$mu.mu,
s2_mu = PriorParam$s2.mu,
q0 = q0,
n = n,
mu1 = mu1,
u = uGene,
ind = indGene,
exponent = 1,
mintol = 1e-3
)
mu1 <- c(6.41, 15.67, 5.57, 11.80, 28.44)
mu1_obs <- round(mu[1:5, 1], 2)
expect_equal(mu1, mu1_obs)
ind <- c(1, 0, 1, 1, 0)
ind_obs <- mu[1:5, 2]
expect_equal(ind, ind_obs)
delta1 <- pmax(0, Start$delta0[seq_len(q0)] + rnorm(q0, sd = 0.005))
delta_prior1 <- BASiCS:::.deltaUpdate(
delta0 = Start$delta0,
prop_var = exp(Start$ls.delta0),
Counts = CountsBio,
mu = Start$mu0,
phinu = Start$phi0 * Start$nu0,
a_delta = PriorParam$a.delta,
b_delta = PriorParam$b.delta,
s2delta = PriorParam$s2.delta,
prior_delta = 1,
q0 = q0,
n = n,
delta1 = delta1,
u = uGene,
ind = indGene,
exponent = 1,
mintol = 1e-3
)
delta1_prior1 <- c(0.73, 0.6, 3.52, 1.2, 0.69)
delta1_prior1_obs <- round(delta_prior1[1:5, 1], 2)
expect_equal(delta1_prior1, delta1_prior1_obs)
ind <- c(1, 1, 1, 1, 0)
ind_obs <- delta_prior1[1:5, 2]
expect_equal(ind, ind_obs)
delta_prior2 <- BASiCS:::.deltaUpdate(
delta0 = Start$delta0,
prop_var = exp(Start$ls.delta0),
Counts = CountsBio,
mu = Start$mu0,
phinu = Start$phi0 * Start$nu0,
a_delta = PriorParam$a.delta,
b_delta = PriorParam$b.delta,
s2delta = PriorParam$s2.delta,
prior_delta = 2,
q0 = q0,
n = n,
delta1 = delta1,
u = uGene,
ind = indGene,
exponent = 1,
mintol = 1e-3
)
delta1_prior2 <- c(1.05, 0.75, 1.71, 2.56, 0.65)
delta1_prior2_obs <- round(delta_prior2[1:5, 1], 2)
expect_equal(delta1_prior2, delta1_prior2_obs)
ind <- c(1, 0, 0, 1, 1)
ind_obs <- delta_prior2[1:5, 2]
expect_equal(ind, ind_obs)
phi1 <- rgamma(n, shape = 0.1, scale = 1)
phi1 <- phi1 / sum(phi1) * length(phi1)
phi <- BASiCS:::.phiUpdate(
phi0 = rep(1, n),
prop_var = 200,
Counts = CountsBio,
mu = Start$mu0,
invdelta = 1 / Start$delta0,
nu = Start$nu0,
aphi = PriorParam$p.phi,
sum_bygene_bio = colSums(CountsBio),
q0 = q0,
n = n,
phi1 = phi1,
exponent = 1
)
phi1 <- c(0.84, 1.01, 0.94, 1.05, 1.07)
phi1_obs <- round(phi[[1]][1:5], 2)
expect_equal(phi1, phi1_obs)
ind <- 1
ind_obs <- phi[[2]]
expect_equal(ind, ind_obs)
s1 <- pmax(0, Start$s0[seq_len(n)] + rnorm(n, sd = 0.005))
s <- BASiCS:::.sUpdateBatch(
s0 = Start$s0,
nu = Start$nu0,
thetaBatch = ThetaBatch,
as = PriorParam$a.s,
bs = PriorParam$b.s,
BatchDesign = BatchDesign,
n = n,
s1 = s1,
exponent = 1
)
s1 <- c(0.22, 0.12, 0.25, 0.32, 0.41)
s1Obs <- round(s[1:5], digits = 2)
expect_equal(s1, s1Obs)
nu1 <- pmax(0, Start$nu0[seq_len(n)] + rnorm(n, sd = 0.005))
nu <- BASiCS:::.nuUpdateBatch(
nu0 = Start$nu0,
prop_var = exp(Start$ls.nu0),
Counts = CountsAll,
SumSpikeInput = sum(rowData(altExp(Data))[, 2]),
BatchDesign = BatchDesign,
mu = Start$mu0,
invdelta = 1 / Start$delta0,
phi = Start$phi0,
s = Start$s0,
thetaBatch = ThetaBatch,
sum_bygene_all = colSums(CountsAll),
q0 = q0,
n = n,
nu1 = nu1,
u = uCell,
ind = indCell,
exponent = 1,
mintol = 1e-3
)
nu1 <- c(0.11, 0.2, 0.07, 0.38, 0.25)
nu1_obs <- round(nu[1:5, 1], 2)
expect_equal(nu1, nu1_obs)
ind <- c(1, 0, 1, 0, 1)
ind_obs <- nu[1:5, 2]
expect_equal(ind, ind_obs)
theta <- BASiCS:::.thetaUpdateBatch(
theta0 = Start$theta0,
prop_var = exp(Start$ls.theta0),
BatchDesign = BatchDesign,
BatchSizes = colSums(BatchDesign),
s = Start$s0,
nu = Start$nu0,
a_theta = PriorParam$a.theta,
b_theta = PriorParam$b.theta,
n = n,
nBatch = ncol(BatchDesign),
exponent = 1,
mintol = 1e-3
)
theta1 <- 0.84
theta1_obs <- round(theta[1, 1], 2)
expect_equal(theta1, theta1_obs)
ind <- 1
ind_obs <- theta[1, 2]
expect_equal(ind, ind_obs)
})
test_that("Spikes + regression", {
set.seed(3)
Data <- makeExampleBASiCS_Data(WithSpikes = TRUE)
CountsBio <- counts(Data)
CountsAll <- rbind(CountsBio, assay(altExp(Data, "spike-ins")))
q0 <- nrow(CountsBio)
n <- ncol(CountsBio)
k <- 12
var <- 1.2
PriorParam <- list(
mu.mu = rep(0, q0), s2.mu = 0.5, s2.delta = 0.5, a.delta = 1,
eta = 5, m = rep(0, k), V = diag(k),
a.sigma2 = 1, b.sigma2 = 1,
b.delta = 1, p.phi = rep(1, times = n),
a.s = 1, b.s = 1, a.theta = 1, b.theta = 1
)
set.seed(2020)
Start <- BASiCS:::.BASiCS_MCMC_Start(
Data,
PriorParam,
Regression = TRUE,
WithSpikes = TRUE
)
uGene <- rep(0, times = q0)
indGene <- rbinom(q0, size = 1, prob = 0.5)
BatchDesign <- model.matrix(~ 0 + Data$BatchInfo)
ThetaBatch <- BatchDesign %*% Start$theta0
uCell <- rep(0, times = n)
indCell <- rbinom(n, size = 1, prob = 0.5)
RBFLocations <- BASiCS:::.estimateRBFLocations(log(Start$mu0), k, TRUE)
X <- BASiCS:::.designMatrix(k, RBFLocations, Start$mu0, var)
mu1 <- pmax(0, Start$mu0[seq_len(q0)] + rnorm(q0, sd = 0.005))
mu <- BASiCS:::.muUpdateReg(
mu0 = Start$mu0,
prop_var = exp(Start$ls.mu0),
Counts = CountsBio,
delta = Start$delta0,
phinu = Start$phi0 * Start$nu0,
sum_bycell_bio = rowSums(CountsBio),
mu_mu = PriorParam$mu.mu,
s2_mu = PriorParam$s2.mu,
q0 = q0,
n = n,
mu1 = mu1,
u = uGene,
ind = indGene,
k = k,
lambda = Start$lambda0,
beta = Start$beta0,
X = X,
sigma2 = Start$sigma20,
variance = var,
exponent = 1,
FixLocations = FALSE,
RBFMinMax = TRUE,
RBFLocations = RBFLocations,
mintol = 1e-3
)
mu1 <- c(5.92, 15.67, 6.23, 12.26, 28.44)
mu1_obs <- round(mu[1:5, 1], 2)
expect_equal(mu1, mu1_obs)
ind <- c(1, 0, 1, 0, 0)
ind_obs <- mu[1:5, 2]
expect_equal(ind, ind_obs)
delta1 <- pmax(0, Start$delta0[seq_len(q0)] + rnorm(q0, sd = 0.005))
delta <- BASiCS:::.deltaUpdateReg(
delta0 = Start$delta0,
prop_var = exp(Start$ls.delta0),
Counts = CountsBio,
mu = Start$mu0,
phinu = Start$phi0 * Start$nu0,
q0 = q0,
n = n,
delta1 = delta1,
u = uGene,
ind = indGene,
lambda = Start$lambda0,
X = X,
sigma2 = Start$sigma20,
beta = Start$beta0,
exponent = 1,
mintol = 1e-3
)
delta1 <- c(1.39, 0.86, 1.23, 1.5, 0.8)
delta1_obs <- round(delta[1:5, 1], 2)
expect_equal(delta1, delta1_obs)
ind <- c(1, 1, 0, 1, 1)
ind_obs <- delta[1:5, 2]
expect_equal(ind, ind_obs)
beta <- BASiCS:::.betaUpdateReg(
sigma2 = Start$sigma2,
VAux = PriorParam$V,
mAux = PriorParam$m
)
beta1 <- c(0.05, 1.02, 0.48, -0.14, 1.4)
beta1_obs <- round(beta[1:5, 1], 2)
expect_equal(beta1, beta1_obs)
sigma2 <- BASiCS:::.sigma2UpdateReg(
delta = Start$delta0,
beta = Start$beta0,
lambda = Start$lambda0,
V1 = PriorParam$V,
mInvVm0 = 0,
m = PriorParam$m,
sigma2_a0 = PriorParam$a.sigma2,
sigma2_b0 = PriorParam$b.sigma2,
q0 = q0,
exponent = 1
)
expect_equal(round(sigma2, digits = 3), 0.489)
lambda <- BASiCS:::.lambdaUpdateReg(
delta = Start$delta0,
X = X,
beta = Start$beta0,
sigma2 = Start$sigma20,
eta = PriorParam$eta,
q0 = q0,
lambda1 = Start$lambda0,
exponent = 1
)
lambda1 <- c(0.14, 0.13, 0.57, 0.28, 0.06)
lambda1_obs <- round(lambda[1:5, 1], 2)
expect_equal(lambda1, lambda1_obs)
})
test_that("No Spikes + no regression", {
set.seed(5)
Data <- makeExampleBASiCS_Data(WithSpikes = FALSE)
CountsBio <- counts(Data)
q0 <- nrow(CountsBio)
n <- ncol(CountsBio)
PriorParam <- list(
mu.mu = rep(0, q0), s2.mu = 0.5, s2.delta = 0.5, a.delta = 1,
b.delta = 1, p.phi = rep(1, times = n),
a.s = 1, b.s = 1, a.theta = 1, b.theta = 1
)
set.seed(2020)
Start <- BASiCS:::.BASiCS_MCMC_Start(
Data,
PriorParam,
Regression = FALSE,
WithSpikes = FALSE
)
uGene <- rep(0, times = q0)
indGene <- rbinom(q0, size = 1, prob = 0.5)
BatchDesign <- model.matrix(~ 0 + Data$BatchInfo)
ThetaBatch <- BatchDesign %*% Start$theta0
uCell <- rep(0, times = n)
indCell <- rbinom(n, size = 1, prob = 0.5)
## Components for no-spikes
means <- rowMeans(CountsBio)
RefGene <- which.min(means[means >= median(means)])
mu1 <- pmax(0, Start$mu0[seq_len(q0)] + rnorm(q0, sd = 0.005))
mu <- BASiCS:::.muUpdateNoSpikes(
mu0 = Start$mu0,
prop_var = exp(Start$ls.mu0),
Counts = CountsBio,
invdelta = 1 / Start$delta0,
nu = Start$nu0,
sum_bycell_all = rowSums(CountsBio),
mu_mu = PriorParam$mu.mu,
s2_mu = PriorParam$s2.mu,
q0 = q0,
n = n,
mu1 = mu1,
u = uGene,
ind = indGene,
Constrain = mean(log(Start$mu0)),
RefGene = RefGene,
ConstrainGene = seq_len(q0) - 1,
NotConstrainGene = 0,
exponent = 1,
mintol = 1e-3
)
mu1 <- c(9.02, 24.26, 8.12, 13.85, 38.03)
mu1_obs <- round(mu[1:5, 1], 2)
expect_equal(mu1, mu1_obs)
ind <- c(0, 1, 1, 1, 1)
ind_obs <- mu[1:5, 2]
expect_equal(ind, ind_obs)
nu1 <- pmax(0, Start$nu0[seq_len(n)] + rnorm(n, sd = 0.005))
nu <- BASiCS:::.nuUpdateBatchNoSpikes(
nu0 = Start$nu0,
prop_var = exp(Start$ls.nu0),
Counts = CountsBio,
BatchDesign = BatchDesign,
mu = Start$mu0,
invdelta = 1 / Start$delta0,
s = Start$s0,
thetaBatch = ThetaBatch,
sum_bygene_all = colSums(CountsBio),
q0 = q0,
n = n,
nu1 = nu1,
u = uCell,
ind = indCell,
exponent = 1,
mintol = 1e-3
)
nu1 <- c(0.43, 0.73, 1.31, 2.63, 0.52)
nu1_obs <- round(nu[1:5, 1], 2)
expect_equal(nu1, nu1_obs)
ind <- c(1, 1, 0, 1, 1)
ind_obs <- nu[1:5, 2]
expect_equal(ind, ind_obs)
})
test_that("No Spikes + regression", {
set.seed(12)
Data <- makeExampleBASiCS_Data(WithSpikes = FALSE)
CountsBio <- counts(Data)
q0 <- nrow(CountsBio)
n <- ncol(CountsBio)
k <- 12
var <- 1.2
PriorParam <- list(
mu.mu = rep(0, q0), s2.mu = 0.5, s2.delta = 0.5, a.delta = 1,
eta = 5, m = rep(0, k), V = diag(k),
a.sigma2 = 1, b.sigma2 = 1,
b.delta = 1, p.phi = rep(1, times = n),
a.s = 1, b.s = 1, a.theta = 1, b.theta = 1
)
set.seed(2044)
Start <- BASiCS:::.BASiCS_MCMC_Start(
Data,
PriorParam,
Regression = TRUE,
WithSpikes = FALSE
)
uGene <- rep(0, times = q0)
indGene <- rbinom(q0, size = 1, prob = 0.5)
BatchDesign <- model.matrix(~ 0 + Data$BatchInfo)
ThetaBatch <- BatchDesign %*% Start$theta0
uCell <- rep(0, times = n)
indCell <- rbinom(n, size = 1, prob = 0.5)
RBFLocations <- BASiCS:::.estimateRBFLocations(log(Start$mu0), k, TRUE)
X <- BASiCS:::.designMatrix(k, RBFLocations, Start$mu0, var)
## Components for no-spikes
means <- rowMeans(CountsBio)
RefGene <- which.min(means[means >= median(means)])
mu1 <- pmax(0, Start$mu0[seq_len(q0)] + rnorm(q0, sd = 0.005))
mu <- BASiCS:::.muUpdateRegNoSpikes(
mu0 = Start$mu0,
prop_var = exp(Start$ls.mu0),
Counts = CountsBio,
delta = Start$delta0,
invdelta = 1 / Start$delta0,
nu = Start$nu0,
sum_bycell_all = rowSums(CountsBio),
mu_mu = PriorParam$mu.mu,
s2_mu = PriorParam$s2.mu,
q0 = q0,
n = n,
mu1 = mu1,
u = uGene,
ind = indGene,
Constrain = mean(log(Start$mu0)),
RefGene = RefGene,
ConstrainGene = seq_len(q0) - 1,
NotConstrainGene = 0,
k = k,
lambda = Start$lambda0,
beta = Start$beta0,
X = X,
sigma2 = Start$sigma20,
variance = var,
exponent = 1,
FixLocations = FALSE,
RBFMinMax = TRUE,
RBFLocations = RBFLocations,
mintol = 1e-3
)
mu1 <- c(7.1, 17.42, 6.38, 22.63, 36.6)
mu1_obs <- round(mu[1:5, 1], 2)
expect_equal(mu1, mu1_obs)
ind <- c(1, 1, 1, 1, 1)
ind_obs <- mu[1:5, 2]
expect_equal(ind, ind_obs)
delta1 <- pmax(0, Start$delta0[seq_len(q0)] + rnorm(q0, sd = 0.005))
delta <- BASiCS:::.deltaUpdateRegNoSpikes(
delta0 = Start$delta0,
prop_var = exp(Start$ls.delta0),
Counts = CountsBio,
mu = Start$mu0,
nu = Start$nu0,
q0 = q0,
n = n,
delta1 = delta1,
u = uGene,
ind = indGene,
lambda = Start$lambda0,
X = X,
sigma2 = Start$sigma20,
beta = Start$beta0,
exponent = 1,
mintol = 1e-3
)
delta1 <- c(0.67, 0.51, 1.27, 2.28, 0.74)
delta1_obs <- round(delta[1:5, 1], 2)
expect_equal(delta1, delta1_obs)
ind <- c(1, 1, 1, 1, 1)
ind_obs <- delta[1:5, 2]
expect_equal(ind, ind_obs)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.