Nothing
#' @title Filter for input datasets
#'
#' @description \code{BASiCS_Filter} indicates which transcripts and
#' cells pass a pre-defined inclusion criteria. The output of this
#' function used to generate a
#' \code{\linkS4class{SingleCellExperiment}} object required to run BASiCS.
#' For more systematic tools for quality control, please refer to the
#' \code{scater} Bioconductor package.
#'
#' @param Counts Matrix of dimensions \code{q} times \code{n} whose elements
#' corresponds to the simulated expression counts.
#' First \code{q.bio} rows correspond to biological genes. Last \code{q-q.bio}
#' rows correspond to technical spike-in genes.
#' @param Tech Logical vector of length \code{q}. If \code{Tech = FALSE}
#' the gene is biological; otherwise the gene is spike-in.
#' @param SpikeInput Vector of length \code{q-q.bio} whose elements indicate
#' the simulated input concentrations for the spike-in genes.
#' @param BatchInfo Vector of length \code{n} whose elements indicate batch
#' information. Not required if a single batch is present on the data.
#' Default: \code{BatchInfo = NULL}.
#' @param MinTotalCountsPerCell Minimum value of total expression counts
#' required per cell (biological and technical).
#' Default: \code{MinTotalCountsPerCell = 2}.
#' @param MinTotalCountsPerGene Minimum value of total expression counts
#' required per transcript (biological and technical).
#' Default: \code{MinTotalCountsPerGene = 2}.
#' @param MinCellsWithExpression Minimum number of cells where expression
#' must be detected (positive count). Criteria applied to each transcript.
#' Default: \code{MinCellsWithExpression = 2}.
#' @param MinAvCountsPerCellsWithExpression Minimum average number of
#' counts per cells where expression is detected. Criteria applied to
#' each transcript. Default value: \code{MinAvCountsPerCellsWithExpression = 2}.
#'
#' @return A list of 2 elements
#' \describe{
#' \item{\code{Counts}}{Filtered matrix of expression counts}
#' \item{\code{Tech}}{Filtered vector of spike-in indicators}
#' \item{\code{SpikeInput}}{Filtered vector of spike-in genes input molecules}
#' \item{\code{BatchInfo}}{Filtered vector of the 'BatchInfo' argument}
#' \item{\code{IncludeGenes}}{Inclusion indicators for transcripts}
#' \item{\code{IncludeCells}}{Inclusion indicators for cells}
#' }
#'
#' @examples
#'
#' set.seed(1)
#' Counts <- matrix(rpois(50*10, 2), ncol = 10)
#' rownames(Counts) <- c(paste0('Gene', 1:40), paste0('Spike', 1:10))
#' Tech <- c(rep(FALSE,40),rep(TRUE,10))
#' set.seed(2)
#' SpikeInput <- rgamma(10,1,1)
#' SpikeInfo <- data.frame('SpikeID' = paste0('Spike', 1:10),
#' 'SpikeInput' = SpikeInput)
#'
#' Filter <- BASiCS_Filter(Counts, Tech, SpikeInput,
#' MinTotalCountsPerCell = 2,
#' MinTotalCountsPerGene = 2,
#' MinCellsWithExpression = 2,
#' MinAvCountsPerCellsWithExpression = 2)
#' SpikeInfoFilter <- SpikeInfo[SpikeInfo$SpikeID %in% rownames(Filter$Counts),]
#'
#' @author Catalina A. Vallejos \email{cnvallej@@uc.cl}
#'
#' @export
BASiCS_Filter <- function(Counts,
Tech = rep(FALSE, nrow(Counts)),
SpikeInput = NULL,
BatchInfo = NULL,
MinTotalCountsPerCell = 2,
MinTotalCountsPerGene = 2,
MinCellsWithExpression = 2,
MinAvCountsPerCellsWithExpression = 2) {
q <- length(Tech)
n <- ncol(Counts)
CellIndex <- seq_len(n)
GeneIndex <- seq_len(q)
colSumsAll <- Matrix::colSums(Counts)
if ((sum(Tech) > 0) & is.null(SpikeInput)) {
stop("`SpikeInput` is required when the data contains spike-ins")
}
# Cell filter
IncludeCells <- rep(TRUE, times = n)
if (sum(Tech) > 0) {
colSumsBio <- Matrix::colSums(Counts[!Tech, ])
colSumsTech <- Matrix::colSums(Counts[Tech, ])
# Remove cells with zero counts in either biological or technical genes
IncludeCells[which((colSumsBio == 0) | (colSumsTech == 0))] <- FALSE
if (sum(IncludeCells) == 0) {
stop("All cells have zero biological or technical counts \n")
}
}
IncludeCells[which(colSumsAll < MinTotalCountsPerCell)] <- FALSE
Counts1 <- Counts[, IncludeCells]
# Remove transcripts with low total counts across all cells
IncludeGenes <- rep(TRUE, length = q)
rowSumsAll <- matrixStats::rowSums2(Counts1)
IncludeGenes[which(rowSumsAll < MinTotalCountsPerGene)] <- FALSE
# Remove transcripts expressed in less than 'MinExpressedCells' cells
rowSumsNonZero <- matrixStats::rowSums2(Counts1 > 0)
IncludeGenes[which(rowSumsNonZero < MinCellsWithExpression)] <- FALSE
# Remove transcripts with low counts in the cells where they are expressed
if ((min(rowSumsNonZero) == 0) & (MinCellsWithExpression == 0)) {
warning("Some genes have zero counts in all cells. \n",
"These should be removed before running the analysis \n",
"(use 'MinCellsWithExpression' > 0).")
}
ind <- which(rowSumsAll < MinAvCountsPerCellsWithExpression * rowSumsNonZero)
IncludeGenes[ind] <- FALSE
if (!is.null(BatchInfo)) { BatchInfo <- BatchInfo[IncludeCells] }
if (!is.null(SpikeInput)) {
IncludeTech <- IncludeGenes[Tech]
SpikeInput <- SpikeInput[IncludeTech]
}
list(
Counts = Counts1[IncludeGenes, ],
Tech = Tech[IncludeGenes],
SpikeInput = SpikeInput,
BatchInfo = BatchInfo,
IncludeGenes = IncludeGenes,
IncludeCells = IncludeCells
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.