Description Usage Arguments Details Value Author(s) Examples
R package for fast computing for adaptively weighted fisher's method
1 | AWFisher_pvalue(p.values)
|
p.values |
Input G by K p-value matrix. Each row represent a gene and each column represent a study. Note that K has to be >=2 and <=100. |
fast computing for adaptively weighted fisher's method
A list consisting of AWFisher pvalues and AWweight.
pvalues |
AWFisher pvalues. |
weights |
G by K binary weight matrix W. $W_gk = 1$ represents for gene $g$, study $k$ contributes to the meta-analysis result. $W_gk = 0$ otherwise. |
Zhiguang Huo
1 2 3 4 5 6 7 8 9 10 | K <- 40
G <- 10000
p.values = matrix(rbeta(K*G, 1,1), ncol=K)
res = AWFisher_pvalue(p.values)
hist(res$pvalues, breaks=40)
table(rowSums(res$weights))
pvalues=res$pvalues[order(res$pvalues)]
plot(-log10((1:NROW(pvalues))/(1+NROW(pvalues))),
-log10(pvalues),xlab='theoretical quantile', ylab='observed quantile')
lines(c(0,100), c(0,100), col=2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.