Nothing
## ---- echo=FALSE, results="hide", warning=FALSE, message=FALSE----------------
suppressPackageStartupMessages({
library(ATACseqQC)
library(ChIPpeakAnno)
library(BSgenome.Hsapiens.UCSC.hg19)
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
library(phastCons100way.UCSC.hg19)
library(MotifDb)
library(GenomicAlignments)
})
knitr::opts_chunk$set(warning=FALSE, message=FALSE)
## ---- eval=FALSE--------------------------------------------------------------
# library(BiocManager)
# BiocManager::install(c("ATACseqQC", "ChIPpeakAnno", "MotifDb", "GenomicAlignments",
# "BSgenome.Hsapiens.UCSC.hg19", "TxDb.Hsapiens.UCSC.hg19.knownGene",
# "phastCons100way.UCSC.hg19"))
## -----------------------------------------------------------------------------
## load the library
library(ATACseqQC)
## input the bamFile from the ATACseqQC package
bamfile <- system.file("extdata", "GL1.bam",
package="ATACseqQC", mustWork=TRUE)
bamfile.labels <- gsub(".bam", "", basename(bamfile))
## ---- eval=FALSE--------------------------------------------------------------
# source(system.file("extdata", "IGVSnapshot.R", package = "ATACseqQC"))
## -----------------------------------------------------------------------------
#bamQC(bamfile, outPath=NULL)
estimateLibComplexity(readsDupFreq(bamfile))
## -----------------------------------------------------------------------------
## generate fragement size distribution
fragSize <- fragSizeDist(bamfile, bamfile.labels)
## -----------------------------------------------------------------------------
## bamfile tags to be read in
possibleTag <- list("integer"=c("AM", "AS", "CM", "CP", "FI", "H0", "H1", "H2",
"HI", "IH", "MQ", "NH", "NM", "OP", "PQ", "SM",
"TC", "UQ"),
"character"=c("BC", "BQ", "BZ", "CB", "CC", "CO", "CQ", "CR",
"CS", "CT", "CY", "E2", "FS", "LB", "MC", "MD",
"MI", "OA", "OC", "OQ", "OX", "PG", "PT", "PU",
"Q2", "QT", "QX", "R2", "RG", "RX", "SA", "TS",
"U2"))
library(Rsamtools)
bamTop100 <- scanBam(BamFile(bamfile, yieldSize = 100),
param = ScanBamParam(tag=unlist(possibleTag)))[[1]]$tag
tags <- names(bamTop100)[lengths(bamTop100)>0]
tags
## files will be output into outPath
outPath <- "splited"
dir.create(outPath)
## shift the coordinates of 5'ends of alignments in the bam file
library(BSgenome.Hsapiens.UCSC.hg19)
seqlev <- "chr1" ## subsample data for quick run
which <- as(seqinfo(Hsapiens)[seqlev], "GRanges")
gal <- readBamFile(bamfile, tag=tags, which=which, asMates=TRUE, bigFile=TRUE)
shiftedBamfile <- file.path(outPath, "shifted.bam")
gal1 <- shiftGAlignmentsList(gal, outbam=shiftedBamfile)
## -----------------------------------------------------------------------------
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
txs <- transcripts(TxDb.Hsapiens.UCSC.hg19.knownGene)
pt <- PTscore(gal1, txs)
plot(pt$log2meanCoverage, pt$PT_score,
xlab="log2 mean coverage",
ylab="Promoter vs Transcript")
## -----------------------------------------------------------------------------
nfr <- NFRscore(gal1, txs)
plot(nfr$log2meanCoverage, nfr$NFR_score,
xlab="log2 mean coverage",
ylab="Nucleosome Free Regions score",
main="NFRscore for 200bp flanking TSSs",
xlim=c(-10, 0), ylim=c(-5, 5))
## -----------------------------------------------------------------------------
tsse <- TSSEscore(gal1, txs)
tsse$TSSEscore
plot(100*(-9:10-.5), tsse$values, type="b",
xlab="distance to TSS",
ylab="aggregate TSS score")
## -----------------------------------------------------------------------------
library(phastCons100way.UCSC.hg19)
## run program for chromosome 1 only
txs <- txs[seqnames(txs) %in% "chr1"]
genome <- Hsapiens
## split the reads into NucleosomeFree, mononucleosome,
## dinucleosome and trinucleosome.
## and save the binned alignments into bam files.
objs <- splitGAlignmentsByCut(gal1, txs=txs, genome=genome, outPath = outPath,
conservation=phastCons100way.UCSC.hg19)
## list the files generated by splitGAlignmentsByCut.
dir(outPath)
## ----eval=FALSE---------------------------------------------------------------
# objs <- splitBam(bamfile, tags=tags, outPath=outPath,
# txs=txs, genome=genome,
# conservation=phastCons100way.UCSC.hg19)
## ----fig.height=4, fig.width=4------------------------------------------------
library(ChIPpeakAnno)
bamfiles <- file.path(outPath,
c("NucleosomeFree.bam",
"mononucleosome.bam",
"dinucleosome.bam",
"trinucleosome.bam"))
## Plot the cumulative percentage of tag allocation in nucleosome-free
## and mononucleosome bam files.
cumulativePercentage(bamfiles[1:2], as(seqinfo(Hsapiens)["chr1"], "GRanges"))
## ----fig.height=8, fig.width=4------------------------------------------------
TSS <- promoters(txs, upstream=0, downstream=1)
TSS <- unique(TSS)
## estimate the library size for normalization
(librarySize <- estLibSize(bamfiles))
## calculate the signals around TSSs.
NTILE <- 101
dws <- ups <- 1010
sigs <- enrichedFragments(gal=objs[c("NucleosomeFree",
"mononucleosome",
"dinucleosome",
"trinucleosome")],
TSS=TSS,
librarySize=librarySize,
seqlev=seqlev,
TSS.filter=0.5,
n.tile = NTILE,
upstream = ups,
downstream = dws)
## log2 transformed signals
sigs.log2 <- lapply(sigs, function(.ele) log2(.ele+1))
#plot heatmap
featureAlignedHeatmap(sigs.log2, reCenterPeaks(TSS, width=ups+dws),
zeroAt=.5, n.tile=NTILE)
## ----fig.show="hide"----------------------------------------------------------
## get signals normalized for nucleosome-free and nucleosome-bound regions.
out <- featureAlignedDistribution(sigs,
reCenterPeaks(TSS, width=ups+dws),
zeroAt=.5, n.tile=NTILE, type="l",
ylab="Averaged coverage")
## -----------------------------------------------------------------------------
## rescale the nucleosome-free and nucleosome signals to 0~1
range01 <- function(x){(x-min(x))/(max(x)-min(x))}
out <- apply(out, 2, range01)
matplot(out, type="l", xaxt="n",
xlab="Position (bp)",
ylab="Fraction of signal")
axis(1, at=seq(0, 100, by=10)+1,
labels=c("-1K", seq(-800, 800, by=200), "1K"), las=2)
abline(v=seq(0, 100, by=10)+1, lty=2, col="gray")
## -----------------------------------------------------------------------------
## foot prints
library(MotifDb)
CTCF <- query(MotifDb, c("CTCF"))
CTCF <- as.list(CTCF)
print(CTCF[[1]], digits=2)
sigs <- factorFootprints(shiftedBamfile, pfm=CTCF[[1]],
genome=genome,
min.score="90%", seqlev=seqlev,
upstream=100, downstream=100)
## ----fig.height=6, fig.width=6------------------------------------------------
featureAlignedHeatmap(sigs$signal,
feature.gr=reCenterPeaks(sigs$bindingSites,
width=200+width(sigs$bindingSites[1])),
annoMcols="score",
sortBy="score",
n.tile=ncol(sigs$signal[[1]]))
sigs$spearman.correlation
sigs$Profile.segmentation
## -----------------------------------------------------------------------------
vp <- vPlot(shiftedBamfile, pfm=CTCF[[1]],
genome=genome, min.score="90%", seqlev=seqlev,
upstream=200, downstream=200,
ylim=c(30, 250), bandwidth=c(2, 1))
distanceDyad(vp, pch=20, cex=.5)
## -----------------------------------------------------------------------------
path <- system.file("extdata", package="ATACseqQC", mustWork=TRUE)
bamfiles <- dir(path, "*.bam$", full.name=TRUE)
gals <- lapply(bamfiles, function(bamfile){
readBamFile(bamFile=bamfile, tag=character(0),
which=GRanges("chr1", IRanges(1, 1e6)),
asMates=FALSE)
})
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
txs <- transcripts(TxDb.Hsapiens.UCSC.hg19.knownGene)
library(GenomicAlignments)
plotCorrelation(GAlignmentsList(gals), txs, seqlev="chr1")
## ----sessionInfo--------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.