Nothing
## Find the best translation between each pure spectra and mixture and sort
# metabolites by regression residuals
#' @importFrom stats lm
#' @importFrom plyr laply
#' @keywords internal
.translateLibrary <- function(spectrum_obj, nb_points_shift, max.shift){
# find best shift with FFT cross-correlation
ref <- as.numeric(spectrum_obj[["cleaned_spectrum"]]@spectra) *
spectrum_obj[["mixture_weights"]]
which_shift <-
apply(spectrum_obj[["cleaned_library"]]@spectra, 2,
function(x) .findBestShift(ref, x,
maxShift = nb_points_shift)$stepAdj)
spectrum_obj[["shift"]] <-
which_shift * (spectrum_obj[["cleaned_library"]]@ppm.grid[2] -
spectrum_obj[["cleaned_library"]]@ppm.grid[1])
# create a matrix of all pure spectra with shift
spectra_all_shift <-
rbind(matrix(0, nrow = nb_points_shift,
ncol = ncol(spectrum_obj[["cleaned_library"]]@spectra)),
spectrum_obj[["cleaned_library"]]@spectra,
matrix(0, nrow = nb_points_shift,
ncol = ncol(spectrum_obj[["cleaned_library"]]@spectra)))
# shift library according to FFT cross-correlation
spectrum_obj[["cleaned_library"]]@spectra <-
Matrix(t(laply(as.list(seq_len(ncol(
spectrum_obj[["cleaned_library"]]@spectra))),
function(i)
as.matrix(
spectra_all_shift[(nb_points_shift - which_shift[i] + 1):
(nb_points_shift - which_shift[i] +
nrow(spectrum_obj[["cleaned_library"]]@spectra)),
i]))))
# optimal residuals
residuals_opti <-
unlist(lapply(as.list(seq_along(spectrum_obj[["cleaned_library"]])),
function(i) sum((lm(
as.matrix(spectrum_obj[["cleaned_spectrum"]]@spectra)~
as.matrix(spectrum_obj[["cleaned_library"]]@spectra)[, i] -
1)$residuals) ^ 2)))
# metabolites sorted by decreasing residual sum
order <- sort(residuals_opti, decreasing = FALSE, index.return = TRUE)$ix
spectrum_obj[["shift"]] <- spectrum_obj[["shift"]][order]
sorted_library <- spectrum_obj[["cleaned_library"]][order]
spectrum_obj[["max_shift"]] <-
rep(max.shift, length(spectrum_obj[["cleaned_library"]]))
spectrum_obj[["max_nb_points_shift"]] <-
rep(nb_points_shift, length(spectrum_obj[["cleaned_library"]]))
return(spectrum_obj)
}
## Find the best translation between each pure spectra and mixture (test of
## various max.shift to find the best one) then sort
# metabolites by regression residuals
#' @importFrom stats lm
#' @importFrom plyr laply adply
#' @keywords internal
.translateLibrary_combineVersion <- function(spectra_obj, max.shift,
nb_points_shift, spec_bin,
pure.library, ncores, ntasks,
verbose){
# compute all shifts and relative concentrations
if (verbose) cat("Compute shifts for all maximum shift values \n")
all_res <- bplapply(spectra_obj, .allShift, nb_points_shift,
BPPARAM = .createEnv(ncores, ntasks, verbose))
all_shift <- bplapply(seq_along(nb_points_shift), function(y)
join_all(lapply(all_res, function(x, y) x[[y]][["shift"]], y),
by = "metab", type = "full"),
BPPARAM = .createEnv(ncores, ntasks, verbose))
all_shift <- bplapply(all_shift,
function(x) {rownames(x) <- x$metab; x$metab <- NULL;
x[is.na(x)] <- 0; return(x)},
BPPARAM = .createEnv(ncores, ntasks, verbose))
# same shift for all sample
if (verbose) cat("Put the median shift for extreme shift values \n")
all_shift <- bplapply(all_shift, .same_shift,
BPPARAM = .createEnv(ncores, ntasks, verbose))
all_conc <- bplapply(seq_along(nb_points_shift), function(y)
join_all(lapply(all_res, function(x, y) x[[y]][["relative_conc"]], y),
by = "metab", type = "full"),
BPPARAM = .createEnv(ncores, ntasks, verbose))
all_conc <- bplapply(all_conc,
function(x) {rownames(x) <- x$metab; x$metab <- NULL;
x[is.na(x)] <- 0; return(x)},
BPPARAM = .createEnv(ncores, ntasks, verbose))
# compute correlation
if (verbose)
cat("Compute correlations between buckets and quantifications \n")
list_all_cor <- bplapply(all_conc, .compute_correlation, spec_bin,
pure.library, nb_points_shift,
BPPARAM = .createEnv(ncores, ntasks, verbose))
list_all_cor <- lapply(seq_along(list_all_cor),
function(x) {colnames(list_all_cor[[x]])[2] <- x;
return(list_all_cor[[x]])})
all_cor <- join_all(list_all_cor, by = "metab", type = "full")
# best shift by metabolite and sample
all_cor <- adply(all_cor, 1,
function(x) {if (all(is.na(x[2:length(x)]))) x[2] <- 1;
return(x)})
which_corr_max <- apply(all_cor[, 2:ncol(all_cor)], 1, which.max)
names(which_corr_max) <- all_cor[, 1]
final_shift <-
do.call("rbind", lapply(seq_along(which_corr_max),
function(i) all_shift[[which_corr_max[i]]][i,]))
# shift all spectra according to final shift
if (verbose) cat("Shift all spectra according to the best shift \n")
spectra_obj <- bplapply(spectra_obj, .do_shift_corr, final_shift, max.shift,
nb_points_shift, which_corr_max,
BPPARAM = .createEnv(ncores, ntasks, verbose))
return(spectra_obj)
}
# Compute all shifs for all maximum shifts and all spectra
.allShift <- function(spectrum_obj, nb_points_shift) {
## reference spectrum
ref <- as.numeric(spectrum_obj[["cleaned_spectrum"]]@spectra) *
spectrum_obj[["mixture_weights"]]
# Find the best translation between each pure spectra and mixture for each
#max shift
shift_and_conc <- lapply(nb_points_shift, .allShift_internal, spectrum_obj,
ref)
return(shift_and_conc)
}
#' @importFrom plyr ldply
.allShift_internal <- function(nb_points_shift_i, spectrum_obj, ref) {
# find best shift with FFT cross-correlation
which_shift <-
apply(spectrum_obj[["cleaned_library"]]@spectra, 2,
function(x) .findBestShift(ref, x,
maxShift = nb_points_shift_i)$stepAdj)
# data-frame of shifts
shift_i <- data.frame(D = which_shift)
colnames(shift_i) <- spectrum_obj[["cleaned_spectrum"]]@sample.name
shift_i <- cbind(metab = spectrum_obj[["cleaned_library"]]@sample.name,
shift_i)
# perform shit
spectrum_obj[["cleaned_library"]]@spectra <-
Matrix(t(ldply(seq_len(nrow(shift_i)), function(x)
.doShift(spectrum_obj[["cleaned_library"]]@spectra[, x],
shift_i[x, 2], 0, 0))))
# pseudo MLE estimation
B2 <- try(.lmConstrained(spectrum_obj[["cleaned_spectrum"]]@spectra,
spectrum_obj[["cleaned_library"]]@spectra,
spectrum_obj[["mixture_weights"]])$coefficients,
silent = TRUE)
if(is(B2, "try-error")){
B2 <- .lmConstrained(spectrum_obj[["cleaned_spectrum"]]@spectra,
spectrum_obj[["cleaned_library"]]@spectra,
spectrum_obj[["mixture_weights"]], 10e-3)$coefficients
}
# data-frame of relative concentrations
relative_conc_i <-
data.frame(RC = B2 / spectrum_obj[["cleaned_library"]]@nb.protons)
colnames(relative_conc_i) <- spectrum_obj[["cleaned_spectrum"]]@sample.name
relative_conc_i <-
cbind(metab = spectrum_obj[["cleaned_library"]]@sample.name,
relative_conc_i)
return(list(shift = shift_i, relative_conc = relative_conc_i))
}
# Put the median shift for extreme shift values
.same_shift <- function(shift) {
shift_med <- round(apply(shift, 1, median), 0)
change_noncommom_shift <-
as.data.frame(t(vapply(seq_len(nrow(shift)),
function(i) unlist(ifelse(shift[i, ] > shift_med[i] - 5 &
shift[i, ] < shift_med[i] + 5,
shift[i, ], shift_med[i])),
FUN.VALUE = numeric(ncol(shift)))))
rownames(change_noncommom_shift) <- rownames(shift)
colnames(change_noncommom_shift) <- colnames(shift)
return(change_noncommom_shift)
}
# Compute the correlation with buckets
#' @importFrom stats cor
.compute_correlation <- function(concentration_i, spec_bin,
pure.library, nb_points_shift) {
corr_i <- suppressWarnings(cor(t(concentration_i),
t(spec_bin), use = "complete.obs"))
corr_max <- unlist(lapply(seq_len(nrow(corr_i)), .correlation_buckets, corr_i,
pure.library, nb_points_shift))
return(data.frame(metab = rownames(corr_i), corr_max))
}
# Find buckets near pure spectra peaks and compute the correlation
.correlation_buckets <- function(idx, corr_i, pure.library, nb_points_shift) {
pure_spectrum <- pure.library@spectra[, pure.library@sample.name ==
rownames(corr_i)[idx]]
# expanded connected components
signal_peak_lib <- which(pure_spectrum != 0)
min_extremities <- signal_peak_lib[!((signal_peak_lib - 1) %in%
signal_peak_lib)] -
floor(nb_points_shift[length(nb_points_shift)])
max_extremities <- signal_peak_lib[!((signal_peak_lib + 1) %in%
signal_peak_lib)] +
floor(nb_points_shift[length(nb_points_shift)])
peaks_extremities <-
cbind(vapply(min_extremities, max, 1,
FUN.VALUE = numeric(1)),
vapply(max_extremities, min, length(pure.library@ppm.grid),
FUN.VALUE = numeric(1)))
# remove overlapping
long_signal <- unique(unlist(apply(peaks_extremities, 1,
function(x) x[[1]]:x[[2]])))
min_extremities <- long_signal[!((long_signal - 1) %in% long_signal)]
max_extremities <- long_signal[!((long_signal + 1) %in% long_signal)]
peaks_extremities <- cbind(pure.library@ppm.grid[min_extremities],
pure.library@ppm.grid[max_extremities])
# which buckets have signal in pure spectrum
ppm_bucket <- as.numeric(names(corr_i[idx, ]))
which_buck <- unlist(apply(peaks_extremities, 1,
function(x) which(ppm_bucket > x[1] &
ppm_bucket < x[2])))
# return the maximum correlation
return(max(corr_i[idx, which_buck]))
}
# Perform the best library shift for each spectra
.do_shift_corr <- function(spectrum_obj, final_shift, max.shift,
nb_points_shift, which_corr_max) {
obj <- spectrum_obj[["cleaned_spectrum"]]
lib <- spectrum_obj[["cleaned_library"]]
spectrum_obj[["cleaned_library"]]@spectra <-
Matrix(do.call("cbind",
lapply(seq_len(ncol(lib@spectra)),
function(idx)
.doShift(lib@spectra[, idx],
final_shift[lib@sample.name[idx],
obj@sample.name], 0, 0))))
spectrum_obj[["shift"]] <- unlist(
lapply(seq_len(ncol(lib@spectra)),
function(idx)
final_shift[lib@sample.name[idx], obj@sample.name] *
(lib@ppm.grid[2] - lib@ppm.grid[1])))
spectrum_obj[["max_shift"]] <- unlist(
lapply(seq_len(ncol(lib@spectra)),
function(idx)
max.shift[which_corr_max[lib@sample.name[idx]]]))
spectrum_obj[["max_nb_points_shift"]] <- unlist(
lapply(seq_len(ncol(lib@spectra)),
function(idx)
nb_points_shift[which_corr_max[lib@sample.name[idx]]]))
return(spectrum_obj)
}
## Localize deformations of pure spectra
#' @importFrom methods is
#' @importFrom plyr laply
#' @keywords internal
.deformLibrary <- function(spectrum_obj){
# linear regression between mixture and each pure spectra
least_square <-
try(.lmConstrained(as.numeric(spectrum_obj[["cleaned_spectrum"]]@spectra),
spectrum_obj[["cleaned_library"]]@spectra,
spectrum_obj[["mixture_weights"]]), silent = TRUE)
if(is(least_square, "try-error")){
least_square <-
.lmConstrained(as.numeric(spectrum_obj[["cleaned_spectrum"]]@spectra),
spectrum_obj[["cleaned_library"]]@spectra,
spectrum_obj[["mixture_weights"]], 10e-3)
}
# deform each spectrum
spectrum_obj[["cleaned_library"]]@spectra <-
Matrix(t(laply(as.list(seq_along(spectrum_obj[["cleaned_library"]])),
.deformSpectra, spectrum_obj[["cleaned_library"]], least_square,
spectrum_obj[["mixture_weights"]],
spectrum_obj[["max_nb_points_shift"]],
spectrum_obj[["max_shift"]],
spectrum_obj[["shift"]])))
return(spectrum_obj)
}
## Deforme each peak of a pure spectrum to align it on the complex mixture
.deformSpectra <- function(idx_to_deform, pure_lib, least_square,
mixture_weights, nb_points_shift, max.shift, shift) {
# algorithm parameters
peak_threshold <- 1
nb_iter_by_peak <- 2
# linear regression coefficient of spectrum idx_to_deform
LS_coeff <- max(0, as.numeric(least_square$coefficients[idx_to_deform]))
LS_residuals <- as.numeric(least_square$residuals)
# expanded connected components
signal_peak_lib <- which(pure_lib@spectra[, idx_to_deform] > peak_threshold)
min_extremities <- signal_peak_lib[!((signal_peak_lib - 1) %in%
signal_peak_lib)] -
floor(nb_points_shift[idx_to_deform] / 10)
max_extremities <- signal_peak_lib[!((signal_peak_lib + 1) %in%
signal_peak_lib)] +
floor(nb_points_shift[idx_to_deform] / 10)
peaks_extremities <-
cbind(vapply(min_extremities, max, 1,
FUN.VALUE = numeric(1)),
vapply(max_extremities, min, length(pure_lib@ppm.grid),
FUN.VALUE = numeric(1)))
# remove overlapping
long_signal <- unique(unlist(apply(peaks_extremities, 1,
function(x) x[[1]]:x[[2]])))
min_extremities <- long_signal[!((long_signal - 1) %in% long_signal)]
max_extremities <- long_signal[!((long_signal + 1) %in% long_signal)]
peaks_extremities <- cbind(min_extremities, max_extremities)
# remove small peak (less than 3 points)
peaks_extremities <- matrix(peaks_extremities[peaks_extremities[, 2] -
peaks_extremities[, 1] >= 3, ],
ncol = 2, byrow = FALSE)
if (nrow(peaks_extremities) > 0) {
# deform on each connected component
for(peak in seq_len(nrow(peaks_extremities))){
# area of peak to deforme
peak_area <- peaks_extremities[peak, 1]:peaks_extremities[peak, 2]
# peak to deform
to_deform <- pure_lib@spectra[peak_area, idx_to_deform]
# grid to deform
grid_to_deform <- pure_lib@ppm.grid[peak_area]
# parameter of deformation
range_a <- seq(-(max.shift[idx_to_deform] / 10) /
(max(grid_to_deform) - min(grid_to_deform)) / 0.5^2,
(max.shift[idx_to_deform] / 10) /
(max(grid_to_deform) - min(grid_to_deform)) / 0.5^2,
length.out = 20)
range_a <- range_a[range_a < 1 & range_a > -1]
# residuals without those corresponding to the current spectrum
residuals_without_idx <- LS_residuals[peak_area] + LS_coeff * to_deform
# repliacate nb_iter_by_peak times
iter <- 0
while(iter < nb_iter_by_peak){
# optimisation criterion
opti_criterion <- abs(sum(to_deform * residuals_without_idx *
mixture_weights[peak_area]) /
sqrt(sum((to_deform ^ 2) *
mixture_weights[peak_area])))
for(a in range_a){
# for a shift of a:
deformed_spectrum_small <- .deforme(grid_to_deform, to_deform, a)
deformed_grid <- .phi(grid_to_deform, a)
new_opti <- abs(sum(deformed_spectrum_small * residuals_without_idx *
mixture_weights[peak_area]) /
sqrt(sum((deformed_spectrum_small ^ 2) *
mixture_weights[peak_area])))
if(new_opti > opti_criterion &
max(abs(deformed_grid - pure_lib@ppm.grid[peak_area] +
shift[idx_to_deform])) < max.shift[idx_to_deform]){
to_deform <- deformed_spectrum_small
opti_criterion <- new_opti
}
}
iter <- iter + 1
}
pure_lib@spectra[peak_area, idx_to_deform] <- to_deform
}
}
# normalize deformed spectrum
pure_lib@spectra[, idx_to_deform] <- pure_lib@spectra[, idx_to_deform] /
.AUC(pure_lib@ppm.grid, pure_lib@spectra[, idx_to_deform])
return(pure_lib@spectra[, idx_to_deform])
}
## Deform grid x with parameter a and compute new spectrum on deformed grid
#(y = old spectrum)
.deforme <- function(x, y, a) {
phix <- .phi(x, a)
return(.changeGrid(y, x, phix))
}
## Deforme grid x with parameter a
.phi <- function(x, a) {
# put the old grid on [0,1]
u <- min(x)
v <- max(x) - min(x)
z <- (x - u)/v
# new grid with deformation: phi(x) = ax(1-x) + x
tt <- z + a*z*(1 - z)
return(u + tt*v)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.