package_native_routine_registration_skeleton: Write Skeleton for Adding Native Routine Registration to a...

package_native_routine_registration_skeletonR Documentation

Write Skeleton for Adding Native Routine Registration to a Package

Description

Write a skeleton for adding native routine registration to a package.

Usage

package_native_routine_registration_skeleton(dir, con = stdout(),
    align = TRUE, character_only = TRUE, include_declarations = TRUE)

Arguments

dir

Top-level directory of a package.

con

Connection on which to write the skeleton: can be specified as a file path.

align

Logical: should the registration tables be lined up in three columns each?

character_only

Logical: should only .NAME arguments specified by character strings (and not as names of R objects nor expressions) be extracted?

include_declarations

Logical: should the output include declarations (also known as ‘prototypes’) for the registered routines?

Details

Registration is described in section ‘Registering native routines’ of ‘Writing R Extensions’. This function produces a skeleton of the C code which needs to be added to enable registration, conventionally as file ‘src/init.c’ or appended to the sole C file of the package.

This function examines the code in the ‘R’ directory of the package for calls to .C, .Fortran, .Call and .External and creates registration information for those it can make sense of. If the number of arguments used cannot be determined it will be recorded as -1: such values should be corrected.

Optionally the skeleton will include declarations for the registered routines: they should be checked against the C/Fortran source code, not least as the number of arguments is taken from the R code. For .Call and .External calls they will often suffice, but for .C and .Fortran calls the void * arguments would ideally be replaced by the actual types. Otherwise declarations need to be included (they may exist earlier in that file if appending to a file, or in a header file which can be included in ‘init.c’).

The default value of character_only is appropriate when working on a package without any existing registration: character_only = FALSE can be used to suggest updates for a package which has been extended since registration. For the default value, if .NAME values are found which are not character strings (e.g. names or expressions) this is noted via a comment in the output.

Packages which used the earlier form of creating R objects for native symbols via additional arguments in a useDynLib directive will probably most easily be updated to use registration with character_only = FALSE.

If an entry point is used with different numbers of arguments in the package's R code, an entry in the table (and optionally, a declaration) is made for each number, and a comment placed in the output. This needs to be resolved: only .External calls can have a variable number of arguments, which should be declared as -1.

A surprising number of CRAN packages had calls in R code to native routines not included in the package, which will lead to a ‘loading failed’ error during package installation when the registration C code is added.

Calls which do not name a routine such as .Call(...) will be silently ignored.

Value

None: the output is written to the connection con.

Extracting C/C++ prototypes

There are several tools available to extract function declarations from C or C++ code.

For C code one can use cproto (https://invisible-island.net/cproto/cproto.html; Windows executables are available), for example

    cproto -I/path/to/R/include -e *.c
  

ctags (commonly distributed with the OS) covers C and C++., using something like

    ctags -x *.c
  

to list all function usages. (The ‘Exuberant’ version allows a lot more control.)

Extracting Fortran prototypes

gfortran 9.2 and later can extract C prototypes for Fortran subroutines with a special flag:

    gfortran -c -fc-prototypes-external file.f
  

although ironically not for functions declared bind(C).

Note

This only examines the ‘R’ directory: it will not find e.g. .Call calls used directly in examples, tests etc.

Static code analysis is used to find the .C etc calls: it will find those in parts of the R code ‘commented out’ by inclusion in if(FALSE) { ... }. On the other hand, it will fail to find the entry points in constructs like

    .Call(if(int) "rle_i" else "rle_d", i, force)
  

and does not know the value of variables in calls like

    .Call (cfunction, ...)
    .Call(..., PACKAGE="sparseLTSEigen")
  

(but if character_only is false, will extract the first as "cfunction"). Calls which have not been fully resolved will be noted via comments in the output file.

Call to entry points in other packages will be ignored if they have an explicit (character string) PACKAGE argument.

See Also

package.skeleton.

Examples

## Not run: 
## with a completed splines/DESCRIPTION file,
tools::package_native_routine_registration_skeleton('splines',,,FALSE)
## produces
#include <R.h>
#include <Rinternals.h>
#include <stdlib.h> // for NULL
#include <R_ext/Rdynload.h>

/* FIXME: 
   Check these declarations against the C/Fortran source code.
*/

/* .Call calls */
extern SEXP spline_basis(SEXP, SEXP, SEXP, SEXP);
extern SEXP spline_value(SEXP, SEXP, SEXP, SEXP, SEXP);

static const R_CallMethodDef CallEntries[] = {
    {"spline_basis", (DL_FUNC) &spline_basis, 4},
    {"spline_value", (DL_FUNC) &spline_value, 5},
    {NULL, NULL, 0}
};

void R_init_splines(DllInfo *dll)
{
    R_registerRoutines(dll, NULL, CallEntries, NULL, NULL);
    R_useDynamicSymbols(dll, FALSE);
}

## End(Not run)