eset2Phase <- function(eset, low.prob=0.99){ ## takes eSet as input
Y <- round(exprs(eset))
#################################################
## ## initial estimate of prob(X\in bg)
##################################################
Cell0=colMeans(Y==0) # each cell has this percentage 0
par1=apply(Y,2,function(yy) {
yy=yy[yy<=15]
RobustPoi0(yy)}
)
pi0.hat=Cell0/(par1[1,]+(1-par1[1,])*dpois(0,par1[2,]))
if (any((pi0.hat > 1))) {warning("Zero proportion is greater than estimation.")}
pi0.hat <- pmin(pi0.hat, 1)
prob0=pi0.hat*par1[1,]+ pi0.hat*(1-par1[1,])*dpois(0,par1[2,]) ## ZIP prob at 0
############################################
## First round
###########################################
## get the 1-low.prob quantile of ZIP
x0=qpois(pmax(1-(1-low.prob)/(1-par1[1,]),0),par1[2,])
Z= sweep(Y,2,x0)>0 # indicate if a gene is > bg
L=colSums(Y*Z)/1e6 # so far it is like simple total..
mu.g1=log2(rowSums(Z*Y)/rowSums(sweep(Z,2,L,FUN="*")))
mu.g1[is.na(mu.g1)]=0 ## if allZ is 0, it gets NA,
### but we should shrink mu.g1 as well since some mu.g1 is estimated by only a few observations
## leave it here for now.
n.g1=rowSums(Z)
y1=log2(sweep(Y,2,L,FUN="/")+1) #like CPM**
s.g1=sqrt(rowSums(Z*sweep(y1,1,mu.g1)^2)/(n.g1-1)) ## CPM type of SD
mu.g2 = shrink.mu(mu.g1,s.g1,n.g1)
###############################################
## get sd.g
############################################
res.g1=log2(sweep(Y,2,L,FUN="/")+1)-mu.g1
## mad of those res.g1 that are associated with Z==1
tmp=array(0,dim=c(dim(res.g1),2))
tmp[,,1]=res.g1;tmp[,,2]=Z
sd.g1=apply(tmp,1,function(xx) my.mad(xx[xx[,2]==1,1]))
sd.g1[is.na(sd.g1)]=0## if all bg, there's no info about fg sd
## add a shrinkage for sd.g1
sd.prior=squeezeVar(sd.g1^2,n.g1-1)
sd.g2=sqrt(sd.prior$var.post)
####################################### ########
##### gene specific bg. Z_gi
#######################
den.fg = den.bg = NA*Y
for(i in 1:ncol(Y)){
den.bg[,i]=dZinf.pois(Y[,i], par1[1,i], par1[2,i])
den.fg[,i]=dLNP2(x=Y[,i], mu=mu.g1, sigma=sd.g2, l=L[i])
}
Z.fg=sweep(den.fg,2,1-pi0.hat,FUN="*")
Z.bg=sweep(den.bg,2,pi0.hat,FUN="*")
post.Z=Z.fg/(Z.fg+Z.bg)
post.Z[is.na(post.Z)] <- 1
### if I shrink mu.g
den.fg2 = NA*Y
for (i in 1:ncol(Y)){
den.fg2[,i]= dLNP2(x=Y[,i], mu=mu.g2, sigma=sd.g2, l=L[i])
}
Z.fg2=sweep(den.fg2,2,1-pi0.hat,FUN="*")
post.Z2=Z.fg2/(Z.fg2+Z.bg)
post.Z2[is.na(post.Z2)] <- 1
##################################################
## compute offsets
##################################################
Offset = Y*0
Ylim=range(log2(1+Y)-mu.g1);Xlim=range(mu.g1)
for(i in 1:ncol(Y)){
tmp.y=log2(1+Y[,i])-mu.g2
subset= post.Z2[,i] > .99
lm1 <- loess(tmp.y~mu.g1,
weights=post.Z2[,i]*mu.g2,subset=subset,degree=1,span=.3)
Offset[subset,i]=lm1$fitted
## par(mfrow=c(1,2))
## plot(mu.g1, log2(1+Y[,i])-mu.g1, pch=16,cex=.6,ylab="",
## col=rgb(1-post.Z2[,i],0,post.Z2[,i],alpha=rowMeans(post.Z2))
## ,ylim=Ylim,xlim=Xlim,main=i)
## points(lm1$x,lm1$fitted,col=5)
## plot(mu.g1, log2(1+Y[,i])-Offset[,i]-mu.g1, pch=16,cex=.6,ylab="",
## col=rgb(1-post.Z2[,i],0,post.Z2[,i],alpha=rowMeans(post.Z2))
## ,ylim=Ylim,xlim=Xlim,main=i)
## tmp.y2 <- tmp.y-Offset[,i]
## lm2 <- loess(tmp.y2 ~ mu.g1,
## weights=post.Z2[,i]*mu.g2, subset=subset,degree=1,span=.3)
## points(lm2$x,lm2$fitted,col=5)
}
##################################################
## assemble the estimators into sc2pSet object
##################################################
## add mu and sd to feature data
fdata <- fData(eset)
fdata2 <- as.data.frame(cbind(fdata, mu.g2, sd.g2))
colnames(fdata2) <- c(colnames(fdata), "mean", "sd")
fvar <- rbind(fvarMetadata(eset), "mean"="shrinkage estimated foreground mean",
"sd"="shrinkage estimated foreground standard deviation")
featureData <- new("AnnotatedDataFrame", data=fdata2,
varMetadata=fvar)
## add lambda and p0 to phenoData
pdata <- pData(eset)
pdata2 <- as.data.frame(cbind(pdata, par1[1,], par1[2,], L))
colnames(pdata2) <- c(colnames(pdata), "p0", "lambda", "L")
pvar <-rbind(varMetadata(eset), "p0"="proportion of zero inflation",
"lambda"="mean of background poisson",
"L"="foreground library size")
phenoData <- new("AnnotatedDataFrame", data=pdata2, varMetadata=pvar)
out <- new("sc2pSet", exprs=Y, Z=post.Z2, Offset=Offset,
phenoData=phenoData,
featureData=featureData,
experimentData=experimentData(eset),
annotation=annotation(eset))
out
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.