sponge_sample_specific | R Documentation |
A sample control variable strategy is used to identify sample-specific miRNA sponge interactions. In the strategy, seven popular methods (pc, sppc, ppc, hermes, muTaME, cernia, and SPONGE) to identify miRNA sponge interactions.
sponge_sample_specific(miRTarget, ExpData = NULL, mres = NULL,
consider.miR.expr = "TRUE", minSharedmiR = 3, poscorcutoff = 0,
num_perm = 100, padjustvaluecutoff = 0.01, padjustmethod = "BH",
senscorcutoff = 0.3, scorecutoff = 0.5, null_model,
method = c("pc", "pc_parallel", "sppc", "sppc_parallel",
"ppc", "ppc_parallel", "hermes", "hermes_parallel", "cernia",
"cernia_parallel", "sponge_parallel"), num.cores = 2)
miRTarget |
Putative miRNA-target interactions. Required option for method "pc", "pc_parallel", "sppc", "sppc_parallel", "ppc", "ppc_parallel", "hermes", "hermes_parallel", "muTaME", "muTaME_parallel", "cernia", "cernia_parallel", and "sponge_parallel". |
ExpData |
An input expression data frame, the columns are genes and the rows are samples. Required option for method "pc", "pc_parallel", "sppc", "sppc_parallel", "ppc", "ppc_parallel", "hermes" "hermes_parallel", "cernia", "cernia_parallel", and "sponge_parallel". |
mres |
Putative MiRNA Response Elements (mres) data frame, each row contains five elements: Mirna, Target, energy, gap_l, gap_r. Required option for method "muTaME", "muTaME_parallel", "cernia", and "cernia_parallel". |
consider.miR.expr |
Logical value, TRUE for considering miRNA expression data and FALSE for ignoring miRNA expression data |
minSharedmiR |
The minimum number of shared miRNAs between targets. Required option for method "pc", "pc_parallel", "sppc", "sppc_parallel", "ppc", "ppc_parallel", "hermes", "hermes_parallel", "muTaME", "muTaME_parallel", "cernia", "cernia_parallel", and "sponge_parallel". |
poscorcutoff |
A cutoff value of positive correlation. Required option for method "pc", "pc_parallel", "sppc", "sppc_parallel", "cernia", "cernia_parallel", and "sponge_parallel". |
num_perm |
The number of permutations. Required option for method "ppc", "ppc_parallel", "hermes", "hermes_parallel". |
padjustvaluecutoff |
A cutoff value of adjusted p-values. Required option for method "pc", "pc_parallel", "sppc", "sppc_parallel", "ppc", "ppc_parallel", "hermes", "hermes_parallel", "muTaME", "muTaME_parallel", "cernia", "cernia_parallel", and "sponge_parallel". |
padjustmethod |
Adjusted method of p-values, can select one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". Required option for method "miRHomology", "miRHomology_parallel", "pc", "pc_parallel", "sppc", "sppc_parallel", "ppc", "ppc_parallel", "hermes", "hermes_parallel", "muTaME", "muTaME_parallel", "cernia", "cernia_parallel", and "sponge_parallel". |
senscorcutoff |
A cutoff value of sensitivity partial pearson correlation. Required option for method "sppc", "sppc_parallel", and "sponge_parallel". |
scorecutoff |
A cutoff value of normalized score (range from 0 to 1). Required option for method "muTaME", "muTaME_parallel", "cernia", and "cernia_parallel". |
null_model |
Optional, pre-computed null model. Users can also build null model using "sponge_build_null_model" function in SPONGE R package. Required option for method "sponge_parallel". |
method |
Select a method for identifying miRNA sponge interactions, can select one of "pc", "pc_parallel", "sppc", "sppc_parallel", "ppc", "ppc_parallel", "hermes", "hermes_parallel", "muTaME", "muTaME_parallel", "cernia", "cernia_parallel", "sponge_parallel". The seven methods ("miRHomology_parallel", "pc_parallel", "sppc_parallel", "ppc_parallel", "hermes_parallel", "muTaME_parallel", "cernia_parallel") are the parallel versions of the seven original methods ("miRHomology", "pc", "sppc", "ppc", "hermes", "muTaME", "cernia"). |
num.cores |
The number of CPU cores to be selected. Required option for method "pc_parallel", "sppc_parallel", "ppc_parallel", "hermes_parallel", "muTaME_parallel", "cernia_parallel", and "sponge_parallel". |
A list of sample-specific miRNA sponge interactions.
Junpeng Zhang (https://www.researchgate.net/profile/Junpeng_Zhang3)
1. Le TD, Zhang J, Liu L, et al. Computational methods for identifying miRNA sponge interactions. Brief Bioinform., 2017, 18(4):577-590.
2. Li JH, Liu S, Zhou H, et al. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res., 2014, 42(Database issue):D92-7.
3. Sarver AL, Subramanian S. Competing endogenous RNA database. Bioinformation, 2012, 8(15):731-3.
4. Zhou X, Liu J, Wang W, Construction and investigation of breast-cancer-specific ceRNA network based on the mRNA and miRNA expression data. IET Syst Biol., 2014, 8(3):96-103.
5. Xu J, Li Y, Lu J, et al. The mRNA related ceRNA-ceRNA landscape and significance across 20 major cancer types. Nucleic Acids Res., 2015, 43(17):8169-82.
6. Paci P, Colombo T, Farina L, Computational analysis identifies a sponge interaction network between long non-coding RNAs and messenger RNAs in human breast cancer. BMC Syst Biol., 2014, 8:83.
7. Sumazin P, Yang X, Chiu HS, et al. An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell, 2011, 147(2):370-81.
8. Tay Y, Kats L, Salmena L, et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell, 2011, 147(2):344-57.
9. Sardina DS, Alaimo S, Ferro A, Pulvirenti A, Giugno R. A novel computational method for inferring competing endogenous interactions. Brief Bioinform. 2017;18(6):1071-1081.
10. List M, Dehghani Amirabad A, Kostka D, Schulz MH. Large-scale inference of competing endogenous RNA networks with sparse partial correlation. Bioinformatics. 2019;35(14):i596-i604.
# Obtain expression data file "ExpData.csv" in csv format
ExpDatacsv <- system.file("extdata","ExpData.csv",package="miRspongeR")
ExpData <- read.csv(ExpDatacsv, header=TRUE, sep=",")
# Obtain miRNA-target interaction data file "miR2Target.csv" in csv format
miR2Target <- system.file("extdata", "miR2Target.csv", package="miRspongeR")
miRTarget <- read.csv(miR2Target, header=TRUE, sep=",")
# Identifying sample-specific miRNA sponge interactions,
# the sppc method is used to identify miRNA sponge interactions
sponge_sample_specific_net <- sponge_sample_specific(miRTarget, ExpData, senscorcutoff = 0.1, method = "sppc")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.