## ----style, echo=FALSE, results="asis", message=FALSE-------------------------
BiocStyle::markdown()
knitr::opts_chunk$set(tidy = FALSE,
warning = FALSE,
message = FALSE)
## ----echo=FALSE, results='hide', message=FALSE--------------------------------
suppressPackageStartupMessages(library(miRSM))
## ----eval=TRUE, include=TRUE--------------------------------------------------
data(BRCASampleData)
## ----eval=TRUE, include=TRUE--------------------------------------------------
modulegenes_WGCNA <- module_WGCNA(ceRExp[, seq_len(80)],
mRExp[, seq_len(80)])
modulegenes_WGCNA
## ----eval=TRUE, include=TRUE--------------------------------------------------
modulegenes_GFA <- module_GFA(ceRExp[seq_len(20), seq_len(15)],
mRExp[seq_len(20), seq_len(15)],
iter.max = 3000)
modulegenes_GFA
## ----eval=TRUE, include=TRUE--------------------------------------------------
modulegenes_igraph <- module_igraph(ceRExp[, seq_len(10)],
mRExp[, seq_len(10)])
modulegenes_igraph
## ----eval=TRUE, include=TRUE--------------------------------------------------
modulegenes_ProNet <- module_ProNet(ceRExp[, seq_len(10)],
mRExp[, seq_len(10)])
modulegenes_ProNet
## ----eval=TRUE, include=TRUE--------------------------------------------------
# Reimport NMF package to avoid conflicts with DelayedArray package
library(NMF)
modulegenes_NMF <- module_NMF(ceRExp[, seq_len(10)],
mRExp[, seq_len(10)])
modulegenes_NMF
## ----eval=TRUE, include=TRUE--------------------------------------------------
modulegenes_clust <- module_clust(ceRExp[, seq_len(30)],
mRExp[, seq_len(30)])
modulegenes_clust
## ----eval=TRUE, include=TRUE--------------------------------------------------
modulegenes_biclust <- module_biclust(ceRExp[, seq_len(30)],
mRExp[, seq_len(30)])
modulegenes_biclust
## ----eval=TRUE, include=TRUE--------------------------------------------------
modulegenes_igraph <- module_igraph(ceRExp[, seq_len(10)],
mRExp[, seq_len(10)])
# Identify miRNA sponge modules using sensitivity RV coefficient (SRVC)
miRSM_igraph_SRVC <- miRSM(miRExp, ceRExp, mRExp, miRTarget,
modulegenes_igraph,
num_shared_miRNAs = 3, pvalue.cutoff = 0.05,
method = "SRVC", MC.cutoff = 0.8,
SMC.cutoff = 0.01, RV_method = "RV")
miRSM_igraph_SRVC
## ----eval=TRUE, include=TRUE--------------------------------------------------
nsamples <- 3
modulegenes_all <- module_igraph(ceRExp[, 151:300], mRExp[, 151:300])
modulegenes_exceptk <- lapply(seq(nsamples), function(i)
module_WGCNA(ceRExp[-i, seq(150)],
mRExp[-i, seq(150)]))
miRSM_SRVC_all <- miRSM(miRExp, ceRExp[, 151:300], mRExp[, 151:300],
miRTarget, modulegenes_all,
method = "SRVC", SMC.cutoff = 0.01,
RV_method = "RV")
miRSM_SRVC_exceptk <- lapply(seq(nsamples), function(i) miRSM(miRExp[-i, ],
ceRExp[-i, seq(150)], mRExp[-i, seq(150)],
miRTarget, modulegenes_exceptk[[i]],
method = "SRVC",
SMC.cutoff = 0.01, RV_method = "RV"))
Modulegenes_all <- miRSM_SRVC_all[[2]]
Modulegenes_exceptk <- lapply(seq(nsamples), function(i) miRSM_SRVC_exceptk[[i]][[2]])
Modules_SS <- miRSM_SS(Modulegenes_all, Modulegenes_exceptk)
Modules_SS
## ----eval=FALSE, include=TRUE-------------------------------------------------
# modulegenes_WGCNA <- module_WGCNA(ceRExp[, seq_len(150)],
# mRExp[, seq_len(150)])
# # Identify miRNA sponge modules using sensitivity RV coefficient (SRVC)
# miRSM_WGCNA_SRVC <- miRSM(miRExp, ceRExp, mRExp, miRTarget,
# modulegenes_WGCNA, method = "SRVC",
# SMC.cutoff = 0.01, RV_method = "RV")
# miRSM_WGCNA_SRVC_genes <- miRSM_WGCNA_SRVC[[2]]
# miRSM_WGCNA_SRVC_FEA <- module_FA(miRSM_WGCNA_SRVC_genes, Analysis.type = 'FEA')
# miRSM_WGCNA_SRVC_DEA <- module_FA(miRSM_WGCNA_SRVC_genes, Analysis.type = 'DEA')
## ----eval=TRUE, include=TRUE--------------------------------------------------
modulegenes_WGCNA <- module_WGCNA(ceRExp[, seq_len(150)],
mRExp[, seq_len(150)])
# Identify miRNA sponge modules using sensitivity RV coefficient (SRVC)
miRSM_WGCNA_SRVC <- miRSM(miRExp, ceRExp, mRExp, miRTarget,
modulegenes_WGCNA, method = "SRVC",
SMC.cutoff = 0.01, RV_method = "RV")
miRSM_WGCNA_SRVC_genes <- miRSM_WGCNA_SRVC[[2]]
miRSM.CEA.pvalue <- module_CEA(ceRExp, mRExp, BRCA_genes, miRSM_WGCNA_SRVC_genes)
miRSM.CEA.pvalue
## ----eval=FALSE, include=TRUE-------------------------------------------------
# # Using the built-in groundtruth from the miRSM package
# Groundtruthcsv <- system.file("extdata", "Groundtruth_high.csv", package="miRSM")
# Groundtruth <- read.csv(Groundtruthcsv, header=TRUE, sep=",")
# # Using the identified miRNA sponge modules based on WGCNA and sensitivity RV coefficient (SRVC)
# miRSM.Validate <- module_Validate(miRSM_WGCNA_SRVC_genes, Groundtruth)
## ----eval=TRUE, include=TRUE--------------------------------------------------
# Using the identified miRNA sponge modules based on WGCNA and sensitivity RV coefficient (SRVC)
miRSM_WGCNA_Coexpress <- module_Coexpress(ceRExp, mRExp, miRSM_WGCNA_SRVC_genes, resample = 10, method = "mean", test.method = "t.test")
miRSM_WGCNA_Coexpress
## ----eval=TRUE, include=TRUE--------------------------------------------------
# Using the identified miRNA sponge modules based on WGCNA and sensitivity RV coefficient (SRVC)
miRSM_WGCNA_share_miRs <- share_miRs(miRExp, miRTarget, miRSM_WGCNA_SRVC_genes)
miRSM_WGCNA_miRdistribute <- module_miRdistribute(miRSM_WGCNA_share_miRs)
head(miRSM_WGCNA_miRdistribute)
## ----eval=FALSE, include=TRUE-------------------------------------------------
# # Using the identified miRNA sponge modules based on WGCNA and sensitivity RV coefficient (SRVC)
# miRSM_WGCNA_miRtarget <- module_miRtarget(miRSM_WGCNA_share_miRs, miRSM_WGCNA_SRVC_genes)
## ----eval=FALSE, include=TRUE-------------------------------------------------
# # Using the identified miRNA sponge modules based on WGCNA and sensitivity RV coefficient (SRVC)
# miRSM_WGCNA_miRsponge <- module_miRsponge(miRSM_WGCNA_SRVC_genes)
## -----------------------------------------------------------------------------
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.