R/smoothDWT.R

Defines functions smoothDWT

Documented in smoothDWT

#' smooth (denoise) the spectrum by DWT (Discrete Wavelet Transform)
#'
#' Smooth (denoise) the spectrum by DWT (Discrete Wavelet Transform)
#'
#'
#' @param ms a vector representing the mass spectrum
#' @param nLevel the level of DWT decomposition
#' @param wf the name of wavelet for DWT
#' @param localNoiseTh local noise level threshold
#' @param localWinSize local window size for estimate local noise threshold
#' @param globalNoiseTh global noise level threshold
#' @param smoothMethod the method used for denoising. 'hard' means keeping the
#' dwt coefficients higher than the threshold unchanged; "soft" means the dwt
#' coefficients higher than the threshold were subtracted by the threshold.
#' @param method 'dwt' or 'modwt' used for decomposition
#' @return return the smoothed mass spectrum with the 'detail' component of DWT
#' as an attribute 'detail'.
#' @author Pan Du
#' @keywords methods
smoothDWT <- function(ms, nLevel = 6, wf = "la8", localNoiseTh = seq(1, 0, by = -0.2), localWinSize = 500, globalNoiseTh = 0.75,
    smoothMethod = c("soft", "hard"), method = c("dwt", "modwt")) {
    if (!requireNamespace("waveslim", quietly = TRUE)) {
        stop("Please install the waveslim package to use smoothDWT()")
    }
    smoothMethod <- match.arg(smoothMethod)
    method <- match.arg(method)
    specLength <- length(ms)

    ms <- extendNBase(ms, nLevel = nLevel, method = "open", direction = "right")
    if (method == "dwt") {
        coef <- waveslim::dwt(ms, wf = "la8", n.levels = nLevel, boundary = "reflection")
    } else {
        coef <- waveslim::modwt(ms, wf = "la8", n.levels = nLevel, boundary = "reflection")
    }

    localNoiseTh[localNoiseTh > 1] <- 1
    globalNoiseTh[globalNoiseTh > 1] <- 1
    len <- length(localNoiseTh)
    if (len < nLevel) {
        localNoiseTh <- c(localNoiseTh, rep(localNoiseTh[len], nLevel - len))
    }
    len <- length(globalNoiseTh)
    if (len < nLevel) {
        globalNoiseTh <- c(globalNoiseTh, rep(globalNoiseTh[len], nLevel - len))
    }

    coef.new <- coef
    for (i in 1:nLevel) {
        if (localNoiseTh[i] == 1 | globalNoiseTh[i] == 1) {
            coef.new[[i]][] <- 0
        } else {
            coef.i <- coef[[i]]
            ## Two thresholds are used here. One is the global threshold, another one is local threshold
            ## The local peaks should be above both thresholds
            globalTh.i <- stats::quantile(abs(coef.i), globalNoiseTh[i])
            ind.global <- which(abs(coef.i) > globalTh.i)

            ## Transform the vector as a matrix with column length equals winSize
            ## and find the maximum position at each row.
            len <- length(coef.i)
            temp <- matrix(extendNBase(abs(coef.i), base = localWinSize, nLevel = 1, method = "open", direction = "right"), nrow = localWinSize)

            localTh.i <- apply(temp, 2, function(x) stats::quantile(x, localNoiseTh[i]))
            localTh.i <- rep(1, localWinSize) %*% t(localTh.i)
            ind.local <- which(temp > localTh.i)
            selInd <- ind.local[ind.local %in% ind.global]

            coef.i[] <- 0
            if (smoothMethod == "soft") {
                coef.i[selInd] <- sign(coef[[i]][selInd]) * (abs(coef[[i]][selInd]) - localTh.i[selInd])
            } else {
                coef.i[selInd] <- coef[[i]][selInd]
            }
            coef.new[[i]] <- coef.i
        }
    }

    # coefMatrix <- matrix(unlist(coef.new), ncol=nLevel + 1)
    # approx <- coefMatrix[1:specLength, nLevel + 1]
    # detail <- rowSums(coefMatrix[1:specLength, 1:nLevel])
    temp <- coef.new
    temp[[nLevel + 1]][] <- 0
    if (method == "dwt") {
        detail <- waveslim::idwt(temp)[1:specLength]
    } else {
        detail <- waveslim::imodwt(temp)[1:specLength]
    }
    temp <- coef.new
    for (i in 1:nLevel) temp[[i]][] <- 0
    if (method == "dwt") {
        approx <- waveslim::idwt(temp)[1:specLength]
        smoothMS <- waveslim::idwt(coef.new)[1:specLength]
    } else {
        approx <- waveslim::imodwt(temp)[1:specLength]
        smoothMS <- waveslim::imodwt(coef.new)[1:specLength]
    }

    ## Inverse modwt transform
    # smoothMS <- smoothMS[1:specLength]
    attr(smoothMS, "approximate") <- approx
    ## Approximate can be calculated by: approx <- smoothMS - detail
    attr(smoothMS, "detail") <- detail
    return(smoothMS)
}
zeehio/MassSpecWavelet documentation built on Dec. 19, 2024, 12:07 p.m.