#' Identify ridges based on the local maximum matrix
#'
#' Identify ridges by connecting the local maximum of 2-D CWT coefficients from
#' the coarse scale to detail scale. The local maximum matrix is returned from
#' [getLocalMaximumCWT()]
#'
#'
#' @param localMax The local maximum matrix is returned from
#' [getLocalMaximumCWT()] with 1 represents maximum, others are 0.
#' @param iInit The start column to search ridge. By default, it starts from
#' the coarsest scale level.
#' @param step Search step. -1 by default, which means searching from coarse
#' scale to detail scale column by column.
#' @param iFinal The final column index of search ridge.
#' @param minWinSize The minimum slide window size used.
#' @param gapTh The gap allowed during searching for ridge. 3 by default.
#' @param skip The column to be skipped during search.
#' @param scaleToWinSize How scales should be mapped to window sizes. Traditionally,
#' MassSpecWavelet used the `"doubleodd"` mapping (`winSize <- 2*scale+1`). `xcms` switched
#' this mapping to `"halve"` (`winSize <- floor(scale/2)`). Besides `"doubleodd"` and `"halve"`
#' this parameter can also be a custom function of the scale.
#' @return Return a list of ridge. As some ridges may end at the scale larger
#' than 1, in order to keep the uniqueness of the ridge names, we combined the
#' smallest scale of the ridge and m/z index of the peak at that scale together
#' to name the ridges. For example the ridge name "1\_653" means the peak ridge
#' ends at the CWT scale 1 with m/z index 653 at scale 1.
#' @author Pan Du, Simon Lin
#' @seealso [getLocalMaximumCWT()], [identifyMajorPeaks()]
#' @references Du, P., Kibbe, W.A. and Lin, S.M. (2006) Improved peak detection
#' in mass spectrum by incorporating continuous wavelet transform-based pattern
#' matching, Bioinformatics, 22, 2059-2065.
#' @keywords methods
#' @export
#' @examples
#'
#' data(exampleMS)
#' scales <- seq(1, 64, 3)
#' wCoefs <- cwt(exampleMS[5000:11000], scales = scales, wavelet = "mexh")
#'
#' localMax <- getLocalMaximumCWT(wCoefs)
#' ridgeList <- getRidge(localMax)
#' plotRidgeList(ridgeList)
#'
getRidge <- function(localMax, iInit = ncol(localMax), step = -1, iFinal = 1, minWinSize = 5, gapTh = 3, skip = NULL, scaleToWinSize = "doubleodd") {
scales <- as.numeric(colnames(localMax))
if (is.null(scales)) scales <- seq_len(ncol(localMax))
maxInd_curr <- which(localMax[, iInit] > 0)
nMz <- nrow(localMax)
if (is.null(skip)) {
skip <- iInit + 1
}
## Identify all the peak paths from the coarse level to detail levels (high column to low column)
## Only consider the shortest path
if (ncol(localMax) > 1) { ## fixed by Steffen Neumann
colInd <- seq(iInit + step, iFinal, step)
} else {
colInd <- 1
}
ridgeList <- as.list(maxInd_curr)
names(ridgeList) <- maxInd_curr
peakStatus <- as.list(rep(0, length(maxInd_curr)))
names(peakStatus) <- maxInd_curr
## orphanRidgeList keep the ridges disconnected at certain scale level
## Changed by Pan Du 05/11/06
orphanRidgeList <- NULL
orphanRidgeName <- NULL
nLevel <- length(colInd)
for (j in seq_len(nLevel)) {
col.j <- colInd[j]
scale.j <- scales[col.j]
if (colInd[j] == skip) {
oldname <- names(ridgeList)
ridgeList <- lapply(ridgeList, function(x) c(x, x[length(x)]))
# peakStatus <- lapply(peakStatus, function(x) c(x, x[length(x)]))
names(ridgeList) <- oldname
# names(peakStatus) <- oldname
next
}
if (length(maxInd_curr) == 0) {
maxInd_curr <- which(localMax[, col.j] > 0)
next
}
## The slide window size is proportional to the CWT scale
if (identical(scaleToWinSize, "doubleodd")) {
# classic MassSpecWavelet criteria:
winSize.j <- scale.j * 2 + 1
} else if (identical(scaleToWinSize, "halve")) {
# xcms criteria:
winSize.j <- floor(scale.j/2)
} else if (is.function(scaleToWinSize)) {
winSize.j <- scaleToWinSize(scale.j)
} else {
stop('Invalid scaleToWinSize. Please use "doubleodd", "halve" or a custom function(scale.j)')
}
if (winSize.j < minWinSize) {
winSize.j <- minWinSize
}
selPeak.j <- NULL
remove.j <- NULL
for (k in 1:length(maxInd_curr)) {
ind.k <- maxInd_curr[k]
start.k <- ifelse(ind.k - winSize.j < 1, 1, ind.k - winSize.j)
end.k <- ifelse(ind.k + winSize.j > nMz, nMz, ind.k + winSize.j)
ind.curr <- which(localMax[start.k:end.k, col.j] > 0) + start.k - 1
# ind.curr <- which(localMax[, col.j] > 0)
if (length(ind.curr) == 0) {
status.k <- peakStatus[[as.character(ind.k)]]
## bug work-around (fixed by Steffen Neumann)
if (is.null(status.k)) status.k <- gapTh + 1
##
if (status.k > gapTh & scale.j >= 2) {
temp <- ridgeList[[as.character(ind.k)]]
orphanRidgeList <- c(orphanRidgeList, list(temp[1:(length(temp) - status.k)]))
orphanRidgeName <- c(orphanRidgeName, paste(col.j + status.k + 1, ind.k, sep = "_"))
remove.j <- c(remove.j, as.character(ind.k))
next
} else {
ind.curr <- ind.k
peakStatus[[as.character(ind.k)]] <- status.k + 1
}
} else {
peakStatus[[as.character(ind.k)]] <- 0
if (length(ind.curr) >= 2) ind.curr <- ind.curr[which.min(abs(ind.curr - ind.k))]
}
ridgeList[[as.character(ind.k)]] <- c(ridgeList[[as.character(ind.k)]], ind.curr)
selPeak.j <- c(selPeak.j, ind.curr)
}
## Remove the disconnected lines from the currrent list
if (length(remove.j) > 0) {
removeInd <- which(names(ridgeList) %in% remove.j)
ridgeList <- ridgeList[-removeInd]
peakStatus <- peakStatus[-removeInd]
}
## Check for duplicated selected peaks and only keep the one with the longest path.
dupPeak.j <- unique(selPeak.j[duplicated(selPeak.j)])
if (length(dupPeak.j) > 0) {
removeInd <- NULL
for (dupPeak.jk in dupPeak.j) {
selInd <- which(selPeak.j == dupPeak.jk)
selLen <- sapply(ridgeList[selInd], length)
removeInd.jk <- which.max(selLen)
removeInd <- c(removeInd, selInd[-removeInd.jk])
orphanRidgeList <- c(orphanRidgeList, ridgeList[removeInd.jk])
orphanRidgeName <- c(orphanRidgeName, paste(col.j, selPeak.j[removeInd.jk], sep = "_"))
}
selPeak.j <- selPeak.j[-removeInd]
ridgeList <- ridgeList[-removeInd]
peakStatus <- peakStatus[-removeInd]
}
## Update the names of the ridgeList as the new selected peaks
# if (scale.j >= 2) {
if (length(ridgeList) > 0) names(ridgeList) <- selPeak.j
if (length(peakStatus) > 0) names(peakStatus) <- selPeak.j
# }
## If the level is larger than 3, expand the peak list by including other unselected peaks at that level
if (scale.j >= 2) {
maxInd_next <- which(localMax[, col.j] > 0)
unSelPeak.j <- maxInd_next[!(maxInd_next %in% selPeak.j)]
newPeak.j <- as.list(unSelPeak.j)
names(newPeak.j) <- unSelPeak.j
## Update ridgeList
ridgeList <- c(ridgeList, newPeak.j)
maxInd_curr <- c(selPeak.j, unSelPeak.j)
## Update peakStatus
newPeakStatus <- as.list(rep(0, length(newPeak.j)))
names(newPeakStatus) <- newPeak.j
peakStatus <- c(peakStatus, newPeakStatus)
} else {
maxInd_curr <- selPeak.j
}
}
## Attach the peak level at the beginning of the ridge names
if (length(ridgeList) > 0) {
names(ridgeList) <- paste(1, names(ridgeList), sep = "_")
}
if (length(orphanRidgeList) > 0) {
names(orphanRidgeList) <- orphanRidgeName
}
## Combine ridgeList and orphanRidgeList
ridgeList <- c(ridgeList, orphanRidgeList)
## Reverse the order as from the low level to high level.
ridgeList <- lapply(ridgeList, rev)
## order the ridgeList in increasing order
# ord <- order(selPeak.j)
# ridgeList <- ridgeList[ord]
## Remove possible duplicated ridges
ridgeList <- ridgeList[!duplicated(names(ridgeList))]
attr(ridgeList, "class") <- "ridgeList"
attr(ridgeList, "scales") <- scales
return(ridgeList)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.