data_iSMNN | R Documentation |
A list of two expression matrices for two batches. The first batch contains 400 cells of three cell types, fibroblasts, macrophages and endothelial cells. And the second batches has 500 cells of the same three cell types.
data("data_iSMNN")
An object of class list
of length 2.
# Load the example data data_SMNN data("data_iSMNN") # Provide the marker genes for cluster matching markers <- c("Col1a1", "Pdgfra", "Ptprc", "Pecam1") # Specify the cluster labels for each marker gene cluster.info <- c("fibroblast", "fibroblast", "macrophage", "endothelial cells") # Harmonize cluster labels across batches library(SMNN) batch.cluster.labels <- unifiedClusterLabelling(data_SMNN$batch1.mat, data_iSMNN$batch2.mat, features.use = markers, cluster.labels = cluster.info, min.perc = 0.3) names(batch.cluster.labels[[1]]) <- colnames(data_iSMNN$batch1.mat) names(batch.cluster.labels[[2]]) <- colnames(data_iSMNN$batch2.mat) # Construct the input object for batches using Seurat library(Seurat) merge <- CreateSeuratObject(counts = cbind(data_iSMNN$batch1.mat, data_iSMNN$batch2.mat), min.cells = 0, min.features = 0) batch_id <- c(rep("batch1", ncol(data_iSMNN$batch1.mat)), rep("batch2", ncol(data_iSMNN$batch2.mat))) names(batch_id) <- colnames(merge) merge <- AddMetaData(object = merge, metadata = batch_id, col.name = "batch_id") merge.list <- SplitObject(merge, split.by = "batch_id") merge.list <- lapply(X = merge.list, FUN = function(x) { x <- NormalizeData(x) x <- FindVariableFeatures(x, selection.method = "vst", nfeatures = 2000) }) # Correct batch effect corrected.results <- iSMNN(object.list = merge.list, batch.cluster.labels = batch.cluster.labels, matched.clusters = c("endothelial cells", "macrophage", "fibroblast"), strategy = "Short.run", iterations = 5, dims = 1:20, npcs = 30, k.filter = 30)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.