#'
#' @name ceRNAMethod
#' @title Main ceRNAR algorithm
#' @description A function to conduct three steps in algorithm, including pairs
#' filtering, segment clustering and peak merging
#'
#' @import foreach
#' @import utils
#' @import tidyverse
#' @importFrom stats pnorm
#'
#' @param path_prefix user's working directory
#' @param project_name the project name that users can assign (default: demo)
#' @param disease_name the abbreviation of disease that users are interested in
#' (default: DLBC)
#' @param window_size the number of samples for each window (defaut: 10)
#' @param cor_method selection of correlation methods, including pearson and
#' spearman (default: pearson)
#' @param cor_threshold_peak peak threshold of correlation value between 0 and 1
#' (default: 0.85)
#'
#' @returns a dataframe object
#' @export
#'
#' @examples
#' ceRNAMethod(
#' path_prefix = NULL,
#' project_name = 'demo',
#' disease_name = 'DLBC',
#' window_size = 10,
#' cor_method = 'pearson',
#' cor_threshold_peak = 0.85
#' )
#'
#'
ceRNAMethod <- function(path_prefix = NULL,
project_name = 'demo',
disease_name = 'DLBC',
window_size = 10,
cor_method = 'pearson',
cor_threshold_peak = 0.85){
if (is.null(path_prefix)){
path_prefix <- tempdir()
}else{
path_prefix <- path_prefix
}
if (!stringr::str_detect(path_prefix, '/$')){
path_prefix <- paste0(path_prefix, '/')
}
# ceRNApairfiltering
ceRNApairFilering <- function(path_prefix = NULL,
project_name = 'demo',
disease_name = 'DLBC',
window_size = 10,
cor_method = 'pearson'){
if (is.null(path_prefix)){
path_prefix <- tempdir()
}else{
path_prefix <- path_prefix
}
if (!stringr::str_detect(path_prefix, '/$')){
path_prefix <- paste0(path_prefix, '/')
}
time1 <- Sys.time()
message('\u25CF Step 3: Filtering putative mRNA-miRNA pairs using sliding window approach')
# setwd(paste0(project_name,'-',disease_name))
# import example data & putative pairs
dict <- readRDS(paste0(path_prefix, project_name,'-',disease_name,'/02_potentialPairs/',project_name,'-',disease_name,'_MirnaTarget_dictionary.rds'))
mirna <- data.frame(data.table::fread(paste0(path_prefix, project_name,'-',disease_name,'/01_rawdata/',project_name,'-',disease_name,'_mirna.csv')),row.names = 1)
mrna <- data.frame(data.table::fread(paste0(path_prefix, project_name,'-',disease_name,'/01_rawdata/',project_name,'-',disease_name,'_mrna.csv')),row.names = 1)
mirna_total <- unlist(dict[,1])
message(paste0('\u2605 total miRNA: ', length(mirna_total)))
slidingWindow <- function(window_size, mirna_total, cor_method){
chk <- Sys.getenv("_R_CHECK_LIMIT_CORES_", "")
if ((nzchar(chk)) && (chk == "TRUE")) {
# use 2 cores in CRAN/Travis/AppVeyor
num_workers <- 2L
# use 1 cores in CRAN/Travis/AppVeyor
num_workers <- 1L
} else {
# use all cores in devtools::test()
num_workers <- future::availableCores()-1
}
# create a cluster
BiocParallel::register(BiocParallel::MulticoreParam(workers = num_workers), default = TRUE)
BiocParallel::bpstart()
# reate a cluster
parallel_d <- foreach(mir=1:length(mirna_total), .export = c('dict','mirna', 'mrna')) %dopar% {
#mir = 50
mir = mirna_total[mir]
gene <- as.character(data.frame(dict[dict[,1]==mir,][[2]])[,1])
gene <- intersect(gene,rownames(mrna))
gene_mir <- data.frame("miRNA"=t(mirna[rownames(mirna)==mir,]), t(mrna[gene,]))
names(gene_mir) <- c("miRNA",names(gene_mir)[-1])
names(gene_mir) <- gsub("\\.","\\-",names(gene_mir))
w <- window_size
N <- dim(gene_mir)[1] # total samples
gene_pair <- utils::combn(gene,2)
gene_pair_index <- rbind(match(gene_pair[1,], names(gene_mir)),match(gene_pair[2,], names(gene_mir)))
total_pairs <- choose(length(gene),2)
#message(paste0("\u2605 ",mir,"'s total potential ceRNA-miRNA pairs: ",total_pairs))
getcorr <- function(r,s){
#r=2
#s=3
y <- gene_mir[,c(1,r,s)]
y <- y[order(y$miRNA),]
corr <- zoo::rollapply(y, width=w, function(x) stats::cor(x[,2],x[,3],method = cor_method), by.column=FALSE)
miRNA <- zoo::rollapply(y, width=w, function(x) mean(x[,1]), by.column=FALSE)
data <- data.frame(cbind(miRNA,corr))
data <- data[order(data$miRNA),]
data$corr
}
cor_all <- purrr::map2_dfc(gene_pair_index[1,1:total_pairs],gene_pair_index[2,1:total_pairs],getcorr) %>%
suppressMessages()
getordermiRNA <- function(){
y <- gene_mir[,c(1,1,1)]
y <- y[order(y$miRNA),]
#corr <- zoo::rollapply(y, width=w, function(x) cor(x[,2],x[,3],method = cor_method), by.column=FALSE)
miRNA <- zoo::rollapply(y, width=w, function(x) mean(x[,1]), by.column=FALSE)
#data <- data.frame(cbind(miRNA,corr))
#data <- data[order(data$miRNA),]
#data$miRNA
}
win_miRNA <- getordermiRNA()
triplet = data.frame("miRNA"=win_miRNA,"corr"=cor_all)
if (dim(triplet)[2]==2){
names(triplet)[2] <- gsub('\\.\\.\\.','\\.init',names(triplet)[2])
}else{
names(triplet)[2] <- gsub('\\.\\.\\.\\.','\\.init',names(triplet)[2])
names(triplet) <- gsub('\\.\\.\\.\\.','\\.V',names(triplet))
}
triplet
}
parallel_d
}
BiocParallel::bpstop()
Realdata <- slidingWindow(window_size,mirna_total, 'pearson')
saveRDS(Realdata,paste0(path_prefix, project_name,'-',disease_name,'/02_potentialPairs/',project_name,'-',disease_name,'_pairfiltering.rds'))
time2 <- Sys.time()
diftime <- difftime(time2, time1, units = 'min')
message(paste0('\u2605 Consuming time: ',round(as.numeric(diftime)), ' minutes.'))
message('\u2605\u2605\u2605 Ready to next step! \u2605\u2605\u2605')
}
ceRNApairFilering(path_prefix = path_prefix,
project_name = project_name,
disease_name = disease_name,
window_size = window_size,
cor_method = cor_method)
# SegmentClustering + PeakMerging
SegmentClusteringPlusPeakMerging <- function(path_prefix = NULL,
project_name = 'demo',
disease_name = 'DLBC',
cor_threshold_peak = 0.85,
window_size = 10){
if (is.null(path_prefix)){
path_prefix <- tempdir()
}else{
path_prefix <- path_prefix
}
if (!stringr::str_detect(path_prefix, '/$')){
path_prefix <- paste0(path_prefix, '/')
}
time1 <- Sys.time()
message('\u25CF Step 4: Clustering segments using CBS algorithm plus Mearging peaks')
dict <- readRDS(paste0(path_prefix, project_name, '-', disease_name, '/02_potentialPairs/', project_name,'-', disease_name, '_MirnaTarget_dictionary.rds'))
mirna <- data.frame(data.table::fread(paste0(path_prefix, project_name, '-', disease_name, '/01_rawdata/', project_name, '-', disease_name, '_mirna.csv')), row.names = 1)
mrna <- data.frame(data.table::fread(paste0(path_prefix, project_name, '-', disease_name, '/01_rawdata/', project_name, '-', disease_name, '_mrna.csv')), row.names = 1)
mirna_total <- unlist(dict[,1])
d <- readRDS(paste0(path_prefix, project_name,'-',disease_name,'/02_potentialPairs/', project_name,'-',disease_name,'_pairfiltering.rds'))
sigCernaPeak <- function(index, d, cor_threshold_peak, window_size) {
w <- window_size
mir = mirna_total[index]
gene <- as.character(data.frame(dict[dict[, 1] == mir,][[2]])[, 1])
gene <- intersect(gene, rownames(mrna))
gene_pair <- combn(gene, 2)
total_pairs <- choose(length(gene), 2)
chk <- Sys.getenv("_R_CHECK_LIMIT_CORES_", "")
if ((nzchar(chk)) && (chk == "TRUE")) {
# use 2 cores in CRAN/Travis/AppVeyor
num_workers <- 2L
# use 1 cores in CRAN/Travis/AppVeyor
num_workers <- 1L
} else {
# use all cores in devtools::test()
num_workers <- future::availableCores()-1
}
# create a cluster
BiocParallel::register(BiocParallel::MulticoreParam(workers = num_workers), default = TRUE)
BiocParallel::bpstart()
tmp <- foreach(p = 1:total_pairs, .combine = "rbind") %dopar%{
#print(paste0("no_of_index:", index, "|", "no_of_pairs:",p))
cand.ceRNA = c()
location = list()
r = gene_pair[1, p]
s = gene_pair[2, p]
triplet <- d[[index]][, c(1, p + 1)]
names(triplet) <- c("miRNA", "corr")
if (!any(duplicated(triplet$miRNA))){
if (sum(is.na(triplet$corr)) == 0) {
CNA.object <- DNAcopy::CNA(triplet$corr, rep(1, dim(triplet)[1]), triplet$miRNA)
names(CNA.object) <- c("chrom", "maploc", paste("gene", r, "and", s))
sink("/dev/null")
result <- DNAcopy::segment(CNA.object)
sink()
if (sum(result$output$num.mark <= 3) >= 1) {
tooshort <- which(result$output$num.mark <= 3)
num.mark <- c(0, cumsum(result$output$num.mark),
data.table::last(cumsum(result$output$num.mark)))
if (1 %in% diff(tooshort)) {
cc = 1
lag = 0
for (q in 1:(length(tooshort) - 1)) {
if (tooshort[q + 1] - tooshort[q] == 1) {
result$output[tooshort[q], "loc.end"] <- result$output[tooshort[q + 1], "loc.end"]
result$output[tooshort[q], "seg.mean"] <- t(matrix(result$output[tooshort[q]:tooshort[q + 1], "num.mark"])) %*% matrix(result$output[tooshort[q]:tooshort[q + 1], "seg.mean"])/sum(result$output[tooshort[q]:tooshort[q + 1], "num.mark"])
result$output[tooshort[q], "num.mark"] <- sum(result$output[tooshort[q]:tooshort[q + 1], "num.mark"])
result$output[tooshort[q + 1], ] <- result$output[tooshort[q],
]
lag[cc] <- tooshort[q]
cc <- cc + 1
}
}
result$output <- result$output[-lag, ]
row.names(result$output) <- 1:dim(result$output)[1]
tooshort <- which(result$output$num.mark <= 3)
}
if (length(tooshort) >= 1) {
cc = 1
lag = c()
for (t in seq_along(tooshort)) {
long_seg <- which(result$output$num.mark > 3)
diff = abs(tooshort[t] - long_seg)
closest_seg <- long_seg[which(diff == min(diff))]
if (length(closest_seg) >= 2) {
b <- abs(result$output$seg.mean[closest_seg] - result$output$seg.mean[tooshort[t]])
closest_seg <- closest_seg[b == min(b)][1]
}
result$output[tooshort[t], "loc.start"] <- min(result$output[tooshort[t], "loc.start"], result$output[closest_seg, "loc.start"])
result$output[tooshort[t], "loc.end"] <- max(result$output[tooshort[t], "loc.end"], result$output[closest_seg, "loc.end"])
result$output[tooshort[t], "seg.mean"] <- t(matrix(result$output[tooshort[t]:closest_seg, "num.mark"])) %*% matrix(result$output[tooshort[t]:closest_seg, "seg.mean"])/sum(result$output[tooshort[t]:closest_seg, "num.mark"])
result$output[tooshort[t], "num.mark"] <- sum(result$output[tooshort[t]:closest_seg, "num.mark"])
result$output[closest_seg, ] <- result$output[tooshort[t],]
lag[cc] <- tooshort[t]
cc <- cc + 1
}
result$output <- result$output[-lag, ]
row.names(result$output) <- 1:dim(result$output)[1]
}
}
cand.corr <- c(-1, result$output$seg.mean, -1)
peak.loc <- quantmod::findPeaks(cand.corr) - 2
no_merg_loc <- c()
no_merg_count <- 1
if (sum(cand.corr[peak.loc + 1] > cor_threshold_peak) >= 2) {
for (i in 1:(length(peak.loc) - 1)) {
if (is.na(sum(result$output[(peak.loc[i] + 1):(peak.loc[i + 1] - 1), "num.mark"]))) {
break
}
if (sum(result$output[(peak.loc[i] + 1):(peak.loc[i + 1] - 1), "num.mark"]) > w) {
no_merg_loc[no_merg_count] <- peak.loc[i]
}
}
peak.loc <- peak.loc[-which(peak.loc == no_merg_loc)]
while (sum(cand.corr[peak.loc + 1] > cor_threshold_peak) >= 2) {
num.mark <- c(0, cumsum(result$output$num.mark), data.table::last(cumsum(result$output$num.mark)))
TestPeak.pval <- c()
if (length(peak.loc) > 2) {
for (i in 1:(length(peak.loc) - 1)) {
z1 <- psych::fisherz(mean(triplet$corr[(num.mark[peak.loc[i]] + 1):num.mark[peak.loc[i] + 1]], na.rm = TRUE))
z2 <- psych::fisherz(mean(triplet$corr[(num.mark[peak.loc[i]] + 1):num.mark[peak.loc[i + 1] + 1]], na.rm = TRUE))
N1 <- length(triplet$corr[(num.mark[peak.loc[i]] + 1):num.mark[peak.loc[i] + 1]])
N2 <- length(triplet$corr[(num.mark[peak.loc[i]] + 1):num.mark[peak.loc[i + 1] + 1]])
TestPeak.pval[i] <- 2 * pnorm(abs(z1 - z2)/sqrt(1/(N1 - 3) + 1/(N2 - 3)), lower.tail = FALSE)
}
}
if (sum(TestPeak.pval > 0.05) != 0) {
TestPeak.p <- TestPeak.pval[TestPeak.pval > 0.05]
mergp.loc <- which(TestPeak.pval %in% TestPeak.p)
distance <- c()
if (length(peak.loc) > 2) {
for (i in 1:(length(peak.loc) - 1)) {
distance[i] <- sum(result$output[(peak.loc[i] + 1):(peak.loc[i + 1] - 1), "num.mark"])
}
}
peak_min <- mergp.loc[distance[mergp.loc] == min(distance[mergp.loc])]
p_merg <- intersect(mergp.loc, peak_min)
if (length(peak_min) >= 2) {
peak_min <- mergp.loc[TestPeak.pval[p_merg] == min(TestPeak.pval[p_merg])]
}
peak_min <- peak_min[1]
result$output[peak.loc[peak_min], "loc.end"] <- result$output[peak.loc[peak_min + 1], "loc.end"]
result$output[peak.loc[peak_min], "seg.mean"] <- t(matrix(result$output[peak.loc[peak_min]:peak.loc[peak_min + 1], "num.mark"])) %*% matrix(result$output[peak.loc[peak_min]:peak.loc[peak_min +
1], "seg.mean"])/sum(result$output[peak.loc[peak_min]:peak.loc[peak_min +
1], "num.mark"])
result$output[peak.loc[peak_min], "num.mark"] <- sum(result$output[peak.loc[peak_min]:peak.loc[peak_min + 1], "num.mark"])
result$output <- result$output[-c((peak.loc[peak_min] + 1):peak.loc[peak_min + 1]), ]
row.names(result$output) <- 1:dim(result$output)[1]
cand.corr.new <- c(-1, result$output$seg.mean, -1)
peak.loc.new <- quantmod::findPeaks(cand.corr.new) - 2
no_merg_loc <- c()
no_merg_count <- 1
if (length(peak.loc.new) >= 2) {
for (i in 1:(length(peak.loc.new) - 1)) {
if (is.na(sum(result$output[(peak.loc.new[i] + 1):(peak.loc.new[i + 1] - 1), "num.mark"]))) {
break
}
if (sum(result$output[(peak.loc.new[i] + 1):(peak.loc.new[i + 1] - 1), "num.mark"]) > w) {
no_merg_loc[no_merg_count] <- peak.loc.new[i]
}
}
}
peak.loc.new <- peak.loc.new[-as.numeric(no_merg_loc)]
if (length(peak.loc.new) == length(peak.loc))
break
peak.loc <- peak.loc.new
}
else break
}
}
num.mark <- c(0, cumsum(result$output$num.mark), data.table::last(cumsum(result$output$num.mark)))
max_seg <- which(result$output$seg.mean == max(result$output$seg.mean))
min_seg <- which(result$output$seg.mean == min(result$output$seg.mean))
if (length(max_seg) != 1) {
max_seg <- max_seg[2]
}
#print(paste0("min_len:", length(max_seg)))
if (length(min_seg) != 1) {
min_seg <- min_seg[1]
}
z1 <- psych::fisherz(result$output$seg.mean[max_seg])
z2 <- psych::fisherz(result$output$seg.mean[min_seg])
N1 <- result$output[max_seg, "num.mark"]
N2 <- result$output[min_seg, "num.mark"]
Test <- 2 * pnorm(abs(z1 - z2)/sqrt(1/(N1 - 3) + 1/(N2 - 3)), lower.tail = FALSE)
if (!is.na(Test) && Test < 0.05) {
if (sum(cand.corr[peak.loc + 1] > cor_threshold_peak) > 0 && sum(cand.corr[peak.loc + 1] > cor_threshold_peak) <= 2) {
cand.ceRNA = paste(r, s)
peak.loc = sort(c(peak.loc, no_merg_loc))
True_peak <- peak.loc[cand.corr[peak.loc + 1] > cor_threshold_peak]
location = result$output[True_peak, c("loc.start", "loc.end")]
if (!is.null(cand.ceRNA)) {
tmp <- list(miRNA = mir, cand.ceRNA = cand.ceRNA, location = location, numOfseg = result$output$num.mark[True_peak])
}
}
}
}
}
}
BiocParallel::bpstop()
tmp
}
testfunction <- purrr::map(1:length(mirna_total), sigCernaPeak,readRDS(paste0(path_prefix, project_name,'-',disease_name,'/02_potentialPairs/',project_name,'-',disease_name,'_pairfiltering.rds')),cor_threshold_peak,window_size)
FinalResult <- purrr::compact(testfunction)
if (dir.exists(paste0(path_prefix, project_name, '-', disease_name,'/03_identifiedPairs')) == FALSE){
dir.create(paste0(path_prefix, project_name, '-', disease_name,'/03_identifiedPairs'))
}
saveRDS(FinalResult,paste0(path_prefix, project_name,'-',disease_name,'/03_identifiedPairs/',project_name,'-',disease_name,'_finalpairs.rds'))
final_df <- as.data.frame(Reduce(rbind, FinalResult))
flat_df <- final_df %>%
tidyr::unnest(location) %>%
tidyr::unnest(numOfseg)
flat_df <- as.data.frame(flat_df)
data.table::fwrite(flat_df, paste0(path_prefix, project_name,'-', disease_name,'/',project_name,'-', disease_name, '_finalpairs.csv'), row.names = FALSE)
time2 <- Sys.time()
diftime <- difftime(time2, time1, units = 'min')
message(paste0('\u2605 Consuming time: ',round(as.numeric(diftime)), ' min.'))
message('\u2605\u2605\u2605 Ready to next step! \u2605\u2605\u2605')
flat_df
}
final_results <- SegmentClusteringPlusPeakMerging(path_prefix = path_prefix,
project_name = project_name,
disease_name = disease_name,
cor_threshold_peak = cor_threshold_peak,
window_size = window_size)
as.data.frame(final_results)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.