setwd('F:/projects/BioTIP/result/QuanTC_simulation/simulatedEMT_robustness/')
load(file='../sce.RData')
################################################
## replot simulated DNB scores with extended y-axis
###########################################
library(BioTIP)
load('C_cell_type/BioTIP.res.RData')
load('C_cell_type/BioTIP_top1FDR0.05_SimuMCI_100_1_fdr0.05_minsize6.RData')
reorder <- c('E','I1','TC','I2','M')
pdf(file='C_cell_type/BioTIP_top1FDR0.05_barplot_MCI_Sim_RandomGene.pdf',height=3, width=9)
par(mfrow=c(1,3))
for(i in 1:3){
plot_MCI_Simulation(res$CTS.score[i], simuMCI[[i]][reorder,], las=2, ylim=c(0, 0.5), na.rm=TRUE)
}
dev.off()
################################################
## replot simulated IC.shrink scores with extended y-axis
###########################################
library(BioTIP)
load('C_cell_type/BioTIP.res.RData')
load('C_cell_type/BioTIP_top1FDR0.05_IC_sim.PermutateBoth.RData')
reorder <- c('E','I1','TC','I2','M')
nx <- length(res$CTS.candidate)
pdf(file='C_cell_type/BioTIP_top1FDR0.05_IC_Delta_SimresultBoth.pdf',height=5, width=7)
par(mfrow=c(2,nx))
for(i in 1:nx){
x = length(res$CTS.candidate[[i]])
plot_Ic_Simulation(BioTIP_scores[[i]][reorder], SimResults_b[[i]][reorder,],
ylim=c(0, 1),
las = 2, ylab="Ic.shrink",
main= paste("Cluster",names(BioTIP_scores)[i],"\n",x," genes"),
fun="boxplot", #fun="matplot",
which2point=names(BioTIP_scores)[i])
}
for(i in 1:nx){
x = length(res$CTS.candidate[[i]])
plot_SS_Simulation(BioTIP_scores[[i]][reorder], SimResults_b[[i]][reorder,],
main = paste("Delta Ic.shrink",x,"genes"),
ylab=NULL,
xlim=range(0,0.2))
}
dev.off()
###############################
## PLOT gene expression changes
################################
table(sce$C_SNNGraph.k100, sce$cell_type)
# E I1 I2 M TC
# 1 0 1783 0 0 15
# 2 0 16 755 22 92
# 3 0 50 38 5 618
# 4 577 0 0 0 176
# 5 0 0 8 958 250
table(sce$C_SNNGraph.k200, sce$cell_type)
# E I1 I2 M TC
# 1 0 1830 31 0 512
# 2 0 19 762 25 211
# 3 577 0 0 0 175
# 4 0 0 8 960 253
samplesL <- split(rownames(colData(sce)),f = colData(sce)$cell_type)
lengths(samplesL)
# E I1 I2 M TC
#577 1849 801 985 1151
logmat <- as.matrix(logcounts(sce))
tmp <- data.frame(t(logmat[, unlist(samplesL)]))
tmp$cell_type= factor(colData(sce[, unlist(samplesL)])$cell_type,
levels=c('E','I1','TC','I2','M'))
tmp$C_SNNGraph.k100= factor(colData(sce[, unlist(samplesL)])$C_SNNGraph.k100,
levels = c('4', '1', '3', '2', '5'))
# sce$correct_cluster = rep('F', ncol(sce))
# sce$correct_cluster[which(as.vector(sce$cell_type)=='E' & sce$C_SNNGraph.k200=='4')] <- 'T'
# sce$correct_cluster[which(as.vector(sce$cell_type)=='I1' & sce$C_SNNGraph.k200=='1')] <- 'T'
# sce$correct_cluster[which(as.vector(sce$cell_type)=='I2' & sce$C_SNNGraph.k200=='2')] <- 'T'
# sce$correct_cluster[which(as.vector(sce$cell_type)=='M' & sce$C_SNNGraph.k200=='5')] <- 'T'
# sce$correct_cluster[which(as.vector(sce$cell_type)=='TC' & sce$C_SNNGraph.k200=='3')] <- 'T'
tmp$C_SNNGraph.k200= factor(colData(sce[, unlist(samplesL)])$C_SNNGraph.k200,
levels = c('3', '1', '2', '4'))
sce$correct_cluster = rep('F', ncol(sce))
sce$correct_cluster[which(as.vector(sce$cell_type)=='E' & sce$C_SNNGraph.k200=='3')] <- 'T'
sce$correct_cluster[which(as.vector(sce$cell_type)=='I1' & sce$C_SNNGraph.k200=='1')] <- 'T'
sce$correct_cluster[which(as.vector(sce$cell_type)=='I2' & sce$C_SNNGraph.k200=='2')] <- 'T'
sce$correct_cluster[which(as.vector(sce$cell_type)=='M' & sce$C_SNNGraph.k200=='4')] <- 'T'
tmp$correct_cluster <- factor(sce[, unlist(samplesL)]$correct_cluster,
levels=c('T','F'))
levels(sce$cell_type) <- c("E" , "I1", "TC", "I2", "M" )
mycolor = c( "dodgerblue1", "orange", "green","olivedrab2","purple")
names(mycolor) <- levels(sce$cell_type)
pdf(file='boxplot_10genes.pdf', width=10, height=4)
gridExtra::grid.arrange(
ggplot(tmp, aes(x=cell_type, y=miR200t, color=cell_type)) + geom_boxplot(show.legend = FALSE) +
scale_fill_manual(values=mycolor), #geom_point(),
ggplot(tmp, aes(x=cell_type, y=tgfR, color=cell_type)) + geom_boxplot(show.legend = FALSE), #geom_point(),
ggplot(tmp, aes(x=cell_type, y=tgft, color=cell_type)) + geom_boxplot(show.legend = FALSE), #geom_point(),
ggplot(tmp, aes(x=cell_type, y=ZEB, color=cell_type)) + geom_boxplot(show.legend = FALSE), #geom_point(),
ggplot(tmp, aes(x=cell_type, y=zebt, color=cell_type)) + geom_boxplot(show.legend = FALSE), #geom_point(),
ggplot(tmp, aes(x=cell_type, y=ZR1, color=cell_type)) + geom_boxplot(show.legend = FALSE), #geom_point(),
ggplot(tmp, aes(x=cell_type, y=ZR2, color=cell_type)) + geom_boxplot(show.legend = FALSE), #geom_point(),
ggplot(tmp, aes(x=cell_type, y=ZR3, color=cell_type)) + geom_boxplot(show.legend = FALSE), #geom_point(),
ggplot(tmp, aes(x=cell_type, y=ZR4, color=cell_type)) + geom_boxplot(show.legend = FALSE), #geom_point(),
ggplot(tmp, aes(x=cell_type, y=ZR5, color=cell_type)) + geom_boxplot(show.legend = FALSE), #geom_point(),
ncol=5)
gridExtra::grid.arrange(
ggplot(tmp, aes(x=C_SNNGraph.k200, y=miR200t, color=correct_cluster)) + geom_boxplot(show.legend = FALSE), #geom_point(),
ggplot(tmp, aes(x=C_SNNGraph.k200, y=tgfR, color=correct_cluster)) + geom_boxplot(show.legend = FALSE), #geom_point(),
ggplot(tmp, aes(x=C_SNNGraph.k200, y=tgft, color=correct_cluster)) + geom_boxplot(show.legend = FALSE), #geom_point(),
ggplot(tmp, aes(x=C_SNNGraph.k200, y=ZEB, color=correct_cluster)) + geom_boxplot(show.legend = FALSE), #geom_point(),
ggplot(tmp, aes(x=C_SNNGraph.k200, y=zebt, color=correct_cluster)) + geom_boxplot(show.legend = FALSE), #geom_point(),
ggplot(tmp, aes(x=C_SNNGraph.k200, y=ZR1, color=correct_cluster)) + geom_boxplot(show.legend = FALSE), #geom_point(),
ggplot(tmp, aes(x=C_SNNGraph.k200, y=ZR2, color=correct_cluster)) + geom_boxplot(show.legend = FALSE), #geom_point(),
ggplot(tmp, aes(x=C_SNNGraph.k200, y=ZR3, color=correct_cluster)) + geom_boxplot(show.legend = FALSE), #geom_point(),
ggplot(tmp, aes(x=C_SNNGraph.k200, y=ZR4, color=correct_cluster)) + geom_boxplot(show.legend = FALSE), #geom_point(),
ggplot(tmp, aes(x=C_SNNGraph.k200, y=ZR5, color=correct_cluster)) + geom_boxplot(show.legend = FALSE), #geom_point(),
ncol=5)
dev.off()
pdf('umap.pdf')
plotReducedDim(sce, dimred="UMAP", colour_by='cell_type',
text_by='cell_type',
point_size=0.2, text_siz=4)
plotReducedDim(sce, dimred="UMAP", colour_by='cell_type',
text_by='C_SNNGraph.k200',
point_size=0.2, text_siz=4)
plotReducedDim(sce, dimred="UMAP", colour_by='cell_type',
text_by='C_SNNGraph.k100',
point_size=0.2, text_siz=4)
dev.off()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.