# Author: Xu Qiao
# Created: 5th, Dec, 2017
# Last Modifed: 19th, Dec, 2017
# formula reference:
# https://www.statlect.com/fundamentals-of-statistics/
#' @importFrom stats optim na.omit
normDistMLE <- function(x) {
logLikeFunNorm <- function(paraVec) {
# Log of likelihood of a normal distribution
# paravec[1] - mean
# paravec[2] - standard deviation
# x - set of observations.
x <- na.omit(x)
n <- length(x)
-(n/2)*log(2*pi)-(n/2)*log(paraVec[2]^2)-
(1/(2*paraVec[2]^2))*sum((x-paraVec[1])^2)
}
# maximum likelihood estimation to find the most likely parameters
MLE <- optim(c(0.1,0.1), # initial values for mu and sigma
fn=logLikeFunNorm, # function to maximize
method="L-BFGS-B", # this method lets set lower bounds
lower=0.00001, # lower limit for parameters
control=list(fnscale=-1), # maximize the function
hessian=TRUE # calculate Hessian matricce because
# we will need for confidence intervals
)
# return the mean and sd
MLE$par
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.