#' @name runNTP
#' @title Run nearest template prediction
#' @description Using Nearest Template Prediction (NTP) based on predefined templates derived from current identified subtypes to assign potential subtype label on external cohort.
#' @param expr A numeric matrix with row features and sample columns; data is recommended to be z-scored.
#' @param templates A data frame with at least two columns; class (coerced to factor) and probe (coerced to character).
#' @param scaleFlag A logic value to indicate if the expression data should be further scaled. TRUE by default.
#' @param centerFlag A logic value to indicate if the expression data should be further centered. TRUE by default.
#' @param nPerm An integer value to indicate the permutations for p-value estimation.
#' @param distance A string value to indicate the distance measurement. Allowed values contain c('cosine', 'pearson', 'spearman', 'kendall'); "cosine" by default.
#' @param seed An integer value for p-value reproducibility.
#' @param verbose A logic value to indicate whether console messages are to be displayed; TRUE by default.
#' @param doPlot A logic value to indicate whether to produce prediction heatmap; FALSE by default.
#' @param fig.path A string value to indicate the output path for storing the nearest template prediction heatmap.
#' @param fig.name A string value to indicate the name of the nearest template prediction heatmap.
#' @param width A numeric value to indicate the width of output figure.
#' @param height A numeric value to indicate the height of output figure.
#' @return A figure of predictive heatmap by NTP (.pdf) and a list with the following components:
#'
#' \code{ntp.res} a data.frame storing the results of nearest template prediction (see \link[CMScaller]{ntp}).
#'
#' \code{clust.res} similar to `clust.res` returned by `getMOIC()` or `get%algorithm_name%` or `getConsensusMOIC()`.
#'
#' \code{mo.method} a string value indicating the method used for prediction.
#' @export
#' @importFrom CMScaller ntp subHeatmap
#' @importFrom grDevices dev.copy2pdf
#' @examples # There is no example and please refer to vignette.
#' @references Hoshida, Y. (2010). Nearest Template Prediction: A Single-Sample-Based Flexible Class Prediction with Confidence Assessment. PLoS ONE 5, e15543.
runNTP <- function(expr = NULL,
templates = NULL,
scaleFlag = TRUE,
centerFlag = TRUE,
nPerm = 1000,
distance = "cosine",
seed = 123456,
verbose = TRUE,
doPlot = FALSE,
fig.path = getwd(),
fig.name = "ntpheatmap",
width = 5,
height = 5) {
# message("Using up- or down-regulated biomarkers (templates) are highly recommended.\n")
if(!is.element(distance, c("cosine", "pearson", "spearman", "kendall"))) {
stop("the argument of distance should be one of cosine, pearson, spearman, or kendall.")
}
com_feat <- intersect(rownames(expr), templates$probe)
message(paste0("--original template has ",nrow(templates), " biomarkers and ", length(com_feat)," are matched in external expression profile."))
expr <- expr[com_feat, , drop = FALSE]
templates <- templates[which(templates$probe %in% com_feat), , drop = FALSE]
if(is.element(0,as.numeric(table(templates$class)))) {
stop("at least one class has no probes/genes matched in template file!")
}
emat <- t(scale(t(expr), scale = scaleFlag, center = centerFlag))
if(doPlot) {
outFig <- paste0(fig.name,".pdf")
ntp.res <- ntp(emat = emat,
templates = templates,
doPlot = doPlot,
nPerm = nPerm,
distance = distance,
nCores = 1,
seed = seed,
verbose = verbose)
invisible(dev.copy2pdf(file = file.path(fig.path, outFig), width = width, height = height))
} else {
ntp.res <- ntp(emat = emat,
templates = templates,
doPlot = doPlot,
nPerm = nPerm,
distance = distance,
nCores = 1,
seed = seed,
verbose = verbose)
}
ntp.res[,setdiff(colnames(ntp.res),"prediction")] <- round(ntp.res[,setdiff(colnames(ntp.res),"prediction")], 4)
ex.moic.res <- data.frame(samID = rownames(ntp.res),
clust = gsub("CS","",ntp.res$prediction),
row.names = rownames(ntp.res),
stringsAsFactors = FALSE)
return(list(ntp.res = ntp.res, clust.res = ex.moic.res, mo.method = "NTP"))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.