#' @name getLRAcluster
#' @title Get subtypes from LRAcluster
#' @description This function wraps the LRAcluster (Integrated cancer omics data anlsysi by low rank approximation) algorithm and provides standard output for `getMoHeatmap()` and `getConsensusMOIC()`.
#' @param data List of matrices.
#' @param N.clust Number of clusters.
#' @param clusterAlg A string value to indicate the cluster algorithm for similarity matrix; 'ward.D' by default.
#' @param type Data type corresponding to the list of matrics, which can be gaussian, binomial or possion; 'gaussian' by default.
#' @return A list with the following components:
#'
#' \code{fit} an object returned by \link[LRAcluster]{LRAcluster}.
#'
#' \code{clust.res} a data.frame storing sample ID and corresponding clusters.
#'
#' \code{clust.dend} a dendrogram of sample clustering.
#'
#' \code{mo.method} a string value indicating the method used for multi-omics integrative clustering.
#' @examples # There is no example and please refer to vignette.
#' @importFrom dplyr %>%
#' @export
#' @references Wu D, Wang D, Zhang MQ, Gu J (2015). Fast dimension reduction and integrative clustering of multi-omics data using low-rank approximation: application to cancer molecular classification. BMC Genomics, 16(1):1022.
getLRAcluster <- function(data = NULL,
N.clust = NULL,
type = rep("gaussian", length(data)),
clusterAlg = "ward.D"){
# check data
n_dat <- length(data)
if(n_dat > 6){
stop('current verision of MOVICS can support up to 6 datasets.')
}
if(n_dat < 2){
stop('current verision of MOVICS needs at least 2 omics data.')
}
data <- lapply(data, as.matrix)
if(is.element("binomial",type)) {
bindex <- which(type == "binomial")
for (i in bindex) {
a <- which(rowSums(data[[i]]) == 0)
b <- which(rowSums(data[[i]]) == ncol(data[[i]]))
if(length(a) > 0) {
data[[i]] <- data[[i]][which(rowSums(data[[i]]) != 0),] # remove all zero
}
if(length(b) > 0) {
data[[i]] <- data[[i]][which(rowSums(data[[i]]) != ncol(data[[i]])),] # remove all one
}
if(length(a) + length(b) > 0) {
message(paste0("--", names(data)[i],": a total of ",length(a) + length(b), " features were removed due to the categories were not equal to 2!"))
}
}
type[bindex] <- "binary"
}
fit <- LRAcluster(data, dimension = N.clust, types = as.list(type))
dist <- fit$coordinate %>% t %>% dist
clust.dend <- hclust(dist, method = clusterAlg)
clustres <- data.frame(samID = colnames(data[[1]]),
clust = cutree(clust.dend,k = N.clust),
row.names = colnames(data[[1]]),
stringsAsFactors = FALSE)
#clustres <- clustres[order(clustres$clust),]
return(list(fit = fit, clust.res = clustres, clust.dend = clust.dend, mo.method = "LRAcluster"))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.