#' @title Calculation of the metric matrix for Methylation Correlation Block
#'
#' @description To enable quantitative analysis of the methylation patterns \cr
#' within individual Methylation Correlation Blocks across many samples, a single metric to \cr
#' define the methylated pattern of multiple CpG sites within each block.\cr
#' Compound scores which calculated all CpGs within individual Methylation Correlation Blocks by linear, SVM or elastic-net model\cr
#' Predict values were used as the compound methylation values of Methylation Correlation Blocks.
#' @usage metricMCB(MCBset,training_set,Surv,testing_set,
#' Surv.new,Method,predict_time,ci,silent,alpha,n_mstop,n_nu,theta)
#' @export
#' @param training_set methylation matrix used for training the model in the analysis.
#' @param testing_set methylation matrix used in the analysis. This can be missing then training set itself will be used as testing set.
#' @param MCBset Methylation Correlation Block information returned by the IndentifyMCB function.
#' @param Surv Survival function contain the survival information for training.
#' @param Surv.new Survival function contain the survival information for testing.
#' @param Method model used to calculate the compound values for multiple Methylation correlation blocks. \cr
#' Options include "svm" "cox" "mboost" and "enet". The default option is SVM method.
#' @param predict_time time point of the ROC curve used in the AUC calculations, default is 5 years.
#' @param ci if True, the confidence intervals for AUC under area under the receiver operating characteristic curve will be calculated. This will be time consuming. default is False.
#' @param silent True indicates that processing information and progress bar will be shown.
#' @param alpha The elasticnet mixing parameter, with 0 <= alpha <= 1. alpha=1 is the lasso penalty, and alpha=0 the ridge penalty. \cr
#' It works only when "enet" Method is selected.
#' @param n_mstop an integer giving the number of initial boosting iterations. If mstop = 0, the offset model is returned. \cr
#' It works only when "mboost" Method is selected.
#' @param n_nu a double (between 0 and 1) defining the step size or shrinkage parameter in mboost model. \cr
#' It works only when "mboost" Method is selected.
#' @param theta penalty used in the penalized coxph model, which is theta/2 time sum of squared coefficients. default is 1. \cr
#' It works only when "cox" Method is selected.
#' @author Xin Yu
#' @keywords Methylation Correlation
#' @examples
#' #import datasets
#' data(demo_survival_data)
#' datamatrix<-create_demo()
#' data(demo_MCBinformation)
#' #select MCB with at least 3 CpGs.
#' demo_MCBinformation<-demo_MCBinformation[demo_MCBinformation[,"CpGs_num"]>2,]
#'
#' trainingset<-colnames(datamatrix) %in% sample(colnames(datamatrix),0.6*length(colnames(datamatrix)))
#' testingset<-!trainingset
#' #create the results using Cox regression.
#' mcb_cox_res<-metricMCB(MCBset = demo_MCBinformation,
#' training_set = datamatrix[,trainingset],
#' Surv = demo_survival_data[trainingset],
#' testing_set = datamatrix[,testingset],
#' Surv.new = demo_survival_data[testingset],
#' Method = "cox"
#' )
#'
#' @return Object of class \code{list} with elements (XXX will be replaced with the model name you choose):
#' \tabular{ll}{
#' \code{MCB_XXX_matrix_training} \tab Prediction results of model for training set. \cr
#' \code{MCB_XXX_matrix_test_set} \tab Prediction results of model for test set. \cr
#' \code{XXX_auc_results} \tab AUC results for each model. \cr
#' \code{best_XXX_model} \tab Model object for the model with best AUC. \cr
#' \code{maximum_auc} \tab Maximum AUC for the whole generated models. \cr
#' }
#' @references
#' Xin Yu et al. 2019 Predicting disease progression in lung adenocarcinoma patients based on methylation correlated blocks using ensemble machine learning classifiers (under review)
#' @importFrom mboost glmboost predict.glmboost CoxPH boost_control
metricMCB<-function(
MCBset,
training_set,
Surv,
testing_set=NULL,
Surv.new=NULL,
Method=c("svm","cox","enet","mboost")[1],
predict_time = 5,
ci=FALSE,
silent=FALSE,
alpha = 0.5,
n_mstop = 500,
n_nu = 0.1,
theta = 1
){
requireNamespace("stats")
# load private functions
bs_ci <- function(data, indices, predict.time = predict_time) {
d <- data[indices,] # allows boot to select sample
surv.res = survivalROC(Stime = d$survival,
status = d$survival_status,
marker = d$marker,
predict.time = predict.time, method = "NNE",
span = 0.25*NROW(d)^(-0.20))
return(surv.res$AUC)
}
# end load
if (!silent) {
cat("Start anaylsis, this may take a while...\n")
show_bar=nrow(MCBset)>1
}else{
show_bar=FALSE
}
if (show_bar) {
bar<-utils::txtProgressBar(min = 1,max = nrow(MCBset),char = "#",style = 3)
}
if (is.null(Surv)) {
stop(paste("You must have a survival function to train the data."))
}
if (is.integer0(grep("MCB_no|CpGs",colnames(MCBset)))){
stop(paste("Methylation Correlation Block information in your result must have columns of MCB_no and CpGs. Please check your results."))
}
#private functions
create_doc<-function(ci){
if (ci){
write_MCB<-rep(NA,5)
names(write_MCB)<-c('MCB_no','AUC_train','95_CI_train','AUC_test','95_CI_test')
return(write_MCB)
}else{
write_MCB<-rep(NA,3)
names(write_MCB)<-c('MCB_no','AUC_train','AUC_test')
return(write_MCB)
}
}
if (!Method %in% c("svm","cox","enet","mboost")){
stop(paste("Method:",Method,"is not supported, see hlep files for the details.",collapse = " "))
}else if (Method=="svm") {
# constuction of MCB Method matrix for SVM
MCB_svm_matrix_training<-matrix(0,nrow = nrow(MCBset),ncol = ncol(training_set))
colnames(MCB_svm_matrix_training)<-colnames(training_set)
rownames(MCB_svm_matrix_training)<-as.numeric(MCBset[,'MCB_no'])
#if it has a independent test set create the test_set res set
if (!is.null(testing_set)) {
MCB_svm_matrix_test_set<-matrix(0,nrow = nrow(MCBset),ncol = ncol(testing_set))
colnames(MCB_svm_matrix_test_set)<-colnames(testing_set)
rownames(MCB_svm_matrix_test_set)<-as.numeric(MCBset[,'MCB_no'])
}else{
MCB_svm_matrix_test_set<-NULL
}
FunctionResults<-NULL
rz=!(is.na(Surv)|Surv[,1]==0)
times=Surv[rz]
best_auc<-0
best_model<-NULL
mcb_SVM_res<-NULL
for (mcb in seq_len(nrow(MCBset))) {
#if (nrow(MCBset)>1){}
if (show_bar&!silent) {
utils::setTxtProgressBar(bar, mcb)
}
write_MCB<-create_doc(ci)
#save the mcb number
write_MCB['MCB_no']<-as.numeric(MCBset[mcb,'MCB_no'])
# build temp variable for saving the results.
# MCB number
# aquire information for CpG sites in MCB
CpGs<-strsplit(MCBset[mcb,'CpGs']," ")[[1]]
data_used_for_training<-data.frame(t(training_set[CpGs,rz]))
# train a svm model
svm_model <- tryCatch(survivalsvm::survivalsvm(times ~ ., data_used_for_training, gamma.mu = 0.1,type = "regression"),error = NULL)
#predictions
if (!is.null(svm_model)) {
MCB_svm_matrix_training[mcb,]<-stats::predict(svm_model, data.frame(t(training_set[CpGs,])))$predicted
rank_svm <-MCB_svm_matrix_training[mcb,rz]
hr_model<-survival::coxph(times~rank_svm)
hr_svm_train<-predict(hr_model)
auc_and_ci = calculate_auc_ci(survival = times,marker = hr_svm_train,predict_time,ci)
write_MCB['AUC_train']<-auc_and_ci$AUC
if (ci) write_MCB['95_CI_train']<-auc_and_ci$CI95
#if it has a independent test set
if (!is.null(testing_set)){
MCB_svm_matrix_test_set[mcb,]<-stats::predict(svm_model, data.frame(t(testing_set[CpGs,])))$predicted
hr_svm_test<-predict(hr_model,data.frame(rank_svm = MCB_svm_matrix_test_set[mcb,]))
auc_and_ci = calculate_auc_ci(Surv.new,marker = hr_svm_test,predict_time,ci)
write_MCB['AUC_test']<-auc_and_ci$AUC
if (ci) write_MCB['95_CI_test']<-auc_and_ci$CI95
if ((write_MCB['AUC_train']+write_MCB['AUC_test'])>best_auc){
best_auc<-write_MCB['AUC_train']+write_MCB['AUC_test']
best_model<-list(mcb,svm_model,hr_model)
}
#if it does not have a independent test set
}else{
write_MCB<-write_MCB[1:3]
if (write_MCB['AUC_train']>best_auc){
best_auc<-write_MCB['AUC_train']
best_model<-list(mcb,svm_model,hr_model)
}
}
}else{
stop("This svmr model can not be built.")
}
mcb_SVM_res<-rbind(mcb_SVM_res,write_MCB)
}
colnames(mcb_SVM_res)<-c("MCB_no","training_set_auc","test_set_auc")
names(best_model)<-c("MCB_no","svm_model","hr_model")
FunctionResults$MCB_svm_matrix_training<-MCB_svm_matrix_training
FunctionResults$MCB_svm_matrix_test_set<-MCB_svm_matrix_test_set
FunctionResults$svm_auc_results<-mcb_SVM_res
FunctionResults$maximum_auc<-best_auc
FunctionResults$best_svm_model<-best_model
}else if(Method=="cox"){
# constuction of MCB Method matrix for cox
MCB_cox_matrix_training<-matrix(0,nrow = nrow(MCBset),ncol = ncol(training_set))
colnames(MCB_cox_matrix_training)<-colnames(training_set)
rownames(MCB_cox_matrix_training)<-as.numeric(MCBset[,'MCB_no'])
#if it has a independent test set create the test_set res set
if (!is.null(testing_set)) {
MCB_cox_matrix_test_set<-matrix(0,nrow = nrow(MCBset),ncol = ncol(testing_set))
colnames(MCB_cox_matrix_test_set)<-colnames(testing_set)
rownames(MCB_cox_matrix_test_set)<-as.numeric(MCBset[,'MCB_no'])
}else{
MCB_cox_matrix_test_set<-NULL
}
FunctionResults<-NULL
rz=!(is.na(Surv)|Surv[,1]==0)
times=Surv[rz]
best_auc<-0
best_model<-NULL
mcb_cox_res<-NULL
for (mcb in seq_len(nrow(MCBset))) {
if (show_bar&!silent){utils::setTxtProgressBar(bar, mcb)}
write_MCB<-create_doc(ci)
#save the mcb number
write_MCB['MCB_no']<-as.numeric(MCBset[mcb,'MCB_no'])
# build temp variable for saving the results.
# MCB number
# aquire information for CpG sites in MCB
CpGs<-strsplit(MCBset[mcb,'CpGs']," ")[[1]]
data_used_for_training<-data.frame(allvars = as.ridgemat(t(training_set[CpGs,rz])))
# train a ridge cox model when variables are more than 5
if (length(CpGs)<=5){
ridge_models<-tryCatch(survival::coxph(times ~ allvars,data=data_used_for_training),error = NULL)
}else{
ridge_models<-tryCatch(ridge_model(times,data_used_for_training,theta = theta),error = NULL)
}
#predictions
if (!is.null(ridge_models)) {
ridge_models$CpGs <- CpGs
ridge_models <- as.mcb.coxph.penal(ridge_models)
MCB_cox_matrix_training[mcb,]<-predict.mcb.coxph.penal(ridge_models, data.frame(t(training_set[CpGs,])))
auc_and_ci = calculate_auc_ci(survival = times,marker = MCB_cox_matrix_training[mcb,rz],predict_time,ci)
write_MCB['AUC_train']<-auc_and_ci$AUC
if (ci) write_MCB['95_CI_train']<-auc_and_ci$CI95
#if it has a independent test set
if (!is.null(testing_set)){
MCB_cox_matrix_test_set[mcb,]<-predict.mcb.coxph.penal(ridge_models, data.frame(t(testing_set[CpGs,])))
auc_and_ci = calculate_auc_ci(Surv.new,marker = MCB_cox_matrix_test_set[mcb,],predict_time,ci)
write_MCB['AUC_test']<-auc_and_ci$AUC
if (ci) write_MCB['95_CI_test']<-auc_and_ci$CI95
if ((write_MCB['AUC_train']+write_MCB['AUC_test'])>best_auc){
best_auc<-write_MCB['AUC_train']+write_MCB['AUC_test']
best_model<-list(mcb,ridge_models)
}
#if it does not have a independent test set
}else{
write_MCB<-write_MCB[1:3]
if (write_MCB['AUC_train']>best_auc){
best_auc<-write_MCB['AUC_train']
best_model<-list(mcb,ridge_models)
}
}
}else{
stop("This coxph model can not be built.")
}
mcb_cox_res<-rbind(mcb_cox_res,write_MCB)
}
colnames(mcb_cox_res)<-c("MCB_no","training_set_auc","test_set_auc")
names(best_model)<-c("MCB_no","cox_model")
FunctionResults$MCB_cox_matrix_training<-MCB_cox_matrix_training
FunctionResults$MCB_cox_matrix_test_set<-MCB_cox_matrix_test_set
FunctionResults$cox_auc_results<-mcb_cox_res
FunctionResults$maximum_auc<-best_auc
FunctionResults$best_cox_model<-best_model
}else if (Method=="enet") {
# constuction of MCB Method matrix for enet
MCB_enet_matrix_training<-matrix(0,nrow = nrow(MCBset),ncol = ncol(training_set))
colnames(MCB_enet_matrix_training)<-colnames(training_set)
rownames(MCB_enet_matrix_training)<-as.numeric(MCBset[,'MCB_no'])
#if it has a independent test set create the test_set res set
if (!is.null(testing_set)) {
MCB_enet_matrix_test_set<-matrix(0,nrow = nrow(MCBset),ncol = ncol(testing_set))
colnames(MCB_enet_matrix_test_set)<-colnames(testing_set)
rownames(MCB_enet_matrix_test_set)<-as.numeric(MCBset[,'MCB_no'])
}else{
MCB_enet_matrix_test_set<-NULL
}
FunctionResults<-NULL
rz=!(is.na(Surv)|Surv[,1]==0)
times=Surv[rz]
best_auc<-0
best_model<-NULL
mcb_enet_res<-NULL
for (mcb in seq_len(nrow(MCBset))) {
if (show_bar&!silent){utils::setTxtProgressBar(bar, mcb)}
write_MCB<-create_doc(ci)
#save the mcb number
write_MCB['MCB_no']<-as.numeric(MCBset[mcb,'MCB_no'])
# build temp variable for saving the results.
# MCB number
# aquire information for CpG sites in MCB
CpGs<-strsplit(MCBset[mcb,'CpGs']," ")[[1]]
data_used_for_training<-t(training_set[CpGs,rz])
# train a enet model
enet_model <- tryCatch(glmnet::cv.glmnet(data_used_for_training,
times,
#cox model in enet was used, note that here cox and enet penalty were used.
family="cox",
#alpha = 0.5
alpha=alpha,
# The elasticnet mixing parameter, with 0≤α≤ 1. The penalty is defined as
# (1-alpha)/2||beta||_2^2+alpha||beta||_1
# alpha=1 is the lasso penalty, and alpha=0 the ridge penalty.
# type.measure = "AUC"
type.measure= "deviance"
# It uses AUC as the criterion for 10-fold cross-validation.
#foldid = 10
),error = NULL)
#predictions
if (!is.null(enet_model)) {
correctional_value=1
while ( sum(stats::coef(enet_model, s = enet_model$lambda.min-0.001*(correctional_value-1))>0)<1 &
(enet_model$lambda.min-0.001*(correctional_value-1))>0 ) {
correctional_value=correctional_value*1.25
}
lambda_min_corrected<-enet_model$lambda.min-0.001*(correctional_value-1)
#if you use lambda.1se instead, the penalty of enet would be larger, leading that most of covariates were removed form the final model.
MCB_enet_matrix_training[mcb,]<-stats::predict(enet_model,t(training_set[CpGs,]),s=lambda_min_corrected)
auc_and_ci = calculate_auc_ci(survival = times,marker = MCB_enet_matrix_training[mcb,rz],predict_time,ci)
write_MCB['AUC_train']<-auc_and_ci$AUC
if (ci) write_MCB['95_CI_train']<-auc_and_ci$CI95
#if it has a independent test set
if (!is.null(testing_set)){
# lambda.min was used.
MCB_enet_matrix_test_set[mcb,]<-stats::predict(enet_model, t(testing_set[CpGs,]),s=lambda_min_corrected)
auc_and_ci = calculate_auc_ci(Surv.new,marker = MCB_enet_matrix_test_set[mcb,],predict_time,ci)
write_MCB['AUC_test']<-auc_and_ci$AUC
if (ci) write_MCB['95_CI_test']<-auc_and_ci$CI95
if ((write_MCB['AUC_train']+write_MCB['AUC_test'])>best_auc){
best_auc<-write_MCB['AUC_train']+write_MCB['AUC_test']
best_model<-list(mcb,enet_model,lambda_min_corrected)
}
#if it does not have a independent test set
}else{
write_MCB<-write_MCB[1:3]
if (write_MCB['AUC_train']>best_auc){
best_auc<-write_MCB['AUC_train']
best_model<-list(mcb,enet_model,lambda_min_corrected)
}
}
}else{
stop("This enet model can not be built.")
}
mcb_enet_res<-rbind(mcb_enet_res,write_MCB)
}
colnames(mcb_enet_res)<-c("MCB_no","training_set_auc","test_set_auc")
names(best_model)<-c("MCB_no","enet_model","corrected_lambda(min)")
FunctionResults$MCB_enet_matrix_training<-MCB_enet_matrix_training
FunctionResults$MCB_enet_matrix_test_set<-MCB_enet_matrix_test_set
FunctionResults$enet_auc_results<-mcb_enet_res
FunctionResults$maximum_auc<-best_auc
FunctionResults$best_enet_model<-best_model
}else if (Method=="mboost") {
# constuction of MCB Method matrix for mboost
MCB_mboost_matrix_training<-matrix(0,nrow = nrow(MCBset),ncol = ncol(training_set))
colnames(MCB_mboost_matrix_training)<-colnames(training_set)
rownames(MCB_mboost_matrix_training)<-as.numeric(MCBset[,'MCB_no'])
#if it has a independent test set create the test_set res set
if (!is.null(testing_set)) {
MCB_mboost_matrix_test_set<-matrix(0,nrow = nrow(MCBset),ncol = ncol(testing_set))
colnames(MCB_mboost_matrix_test_set)<-colnames(testing_set)
rownames(MCB_mboost_matrix_test_set)<-as.numeric(MCBset[,'MCB_no'])
}else{
MCB_mboost_matrix_test_set<-NULL
}
FunctionResults<-NULL
rz=!(is.na(Surv)|Surv[,1]==0)
times=Surv[rz]
best_auc<-0
best_model<-NULL
mcb_mboost_res<-NULL
for (mcb in seq_len(nrow(MCBset))) {
#if (nrow(MCBset)>1){}
if (show_bar&!silent) {
utils::setTxtProgressBar(bar, mcb)
}
write_MCB<-create_doc(ci)
#save the mcb number
write_MCB['MCB_no']<-as.numeric(MCBset[mcb,'MCB_no'])
# build temp variable for saving the results.
# MCB number
# aquire information for CpG sites in MCB
CpGs<-strsplit(MCBset[mcb,'CpGs']," ")[[1]]
data_used_for_training<-t(training_set[CpGs,rz])
# train a mboost model
mboost_model <- tryCatch(mboost::glmboost(y=times,x=data_used_for_training,family=mboost::CoxPH(),
control=mboost::boost_control(mstop=n_mstop,nu=n_nu)),error = NULL)
#predictions
if (!is.null(mboost_model)) {
MCB_mboost_matrix_training[mcb,]<-stats::predict(mboost_model, t(training_set[CpGs,]))[,1]
lp_mboost <-MCB_mboost_matrix_training[mcb,rz]
hr_model<-survival::coxph(times~lp_mboost)
auc_and_ci = calculate_auc_ci(survival = times,marker = MCB_mboost_matrix_training[mcb,rz],predict_time,ci)
write_MCB['AUC_train']<-auc_and_ci$AUC
if (ci) write_MCB['95_CI_train']<-auc_and_ci$CI95
#if it has a independent test set
if (!is.null(testing_set)){
MCB_mboost_matrix_test_set[mcb,]<-stats::predict(mboost_model, t(testing_set[CpGs,]))[,1]
auc_and_ci = calculate_auc_ci(Surv.new,marker = MCB_mboost_matrix_test_set[mcb,],predict_time,ci)
write_MCB['AUC_test']<-auc_and_ci$AUC
if (ci) write_MCB['95_CI_test']<-auc_and_ci$CI95
if ((write_MCB['AUC_train']+write_MCB['AUC_test'])>best_auc){
best_auc<-write_MCB['AUC_train']+write_MCB['AUC_test']
best_model<-list(mcb,mboost_model,hr_model)
}
#if it does not have a independent test set
}else{
write_MCB<-write_MCB[1:3]
if (write_MCB['AUC_train']>best_auc){
best_auc<-write_MCB['AUC_train']
best_model<-list(mcb,mboost_model,hr_model)
}
}
}else{
stop("This mboost model can not be built.")
}
mcb_mboost_res<-rbind(mcb_mboost_res,write_MCB)
}
colnames(mcb_mboost_res)<-c("MCB_no","training_set_auc","test_set_auc")
names(best_model)<-c("MCB_no","mboost_model","hr_model")
FunctionResults$MCB_mboost_matrix_training<-MCB_mboost_matrix_training
FunctionResults$MCB_mboost_matrix_test_set<-MCB_mboost_matrix_test_set
FunctionResults$mboost_auc_results<-mcb_mboost_res
FunctionResults$maximum_auc<-best_auc
FunctionResults$best_mboost_model<-best_model
}
return(FunctionResults)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.