#' @title Identification of methylation correlated blocks
#'
#' @description This function is used to partition the genome into blocks of tightly co-methylated CpG sites, \cr
#' Methylation correlated blocks. This function calculates Pearson correlation coefficients between \cr
#' the beta values of any two CpGs < CorrelationThreshold was used to identify boundaries between any two \cr
#' adjacent markers indicating uncorrelated methylation. Markers not separated by a boundary were combined into MCB. Pearson correlation coefficients between \cr
#' two adjacent CpGs were calculated.
#'
#' @details Currently, only illumina 450k platform is supported, the methylation profile need to convert into matrix format.
#'
#' @param MethylationProfile Methylation matrix is used in the analysis.
#' @param CorrelationThreshold coef correlation threshold is used for define boundaries.
#' @param method method used for calculation of correlation, \cr
#' should be one of "pearson","spearman","kendall". Defualt is "pearson".
#' @param PositionGap CpG Gap between any two CpGs positioned CpG sites less than 1000 bp (default) will be calculated.
#' @param platform This parameter indicates the platform used to produce the methlyation profile.
#' You can use your own annotation file.
#' @param verbose True as default, which will print the block information for each chromosome.
#'
#' @author Xin Yu
#' @return
#' Object of class \code{list} with elements:
#' \tabular{ll}{
#' \code{MCBsites} \tab Character set contains all CpG sites in MCBs. \cr
#' \code{MCBinformation} \tab Matrix contains the information of results. \cr
#' }
#' @examples
#' data('demo_data',package = "EnMCB")
#'
#' #import the demo TCGA data with 10000+ CpGs site and 455 samples
#' #remove # to run
#' res<-IdentifyMCB(demo_data$realdata)
#' demo_MCBinformation<-res$MCBinformation
#'
#'
#' @export
#'
#' @references
#' Xin Yu, De-Xin Kong, EnMCB: an R/bioconductor package for predicting disease progression based on methylation correlated blocks using ensemble models, Bioinformatics, 2021, btab415
#'
IdentifyMCB<-function(
MethylationProfile,
method=c("pearson","spearman","kendall")[1],
CorrelationThreshold = 0.8,
PositionGap = 1000,
platform = "Illumina Methylation 450K",
verbose = T
){
if (!(method %in% c("pearson","spearman","kendall"))) {
stop(paste("Correlation method should be one of pearson, spearman and kendall."))
}
cat("Start calculating the correlation, this may take a while...\n")
FunctionResults<-list()
if (platform == "Illumina Methylation 450K"){
Illumina_Infinium_Human_Methylation_450K<-get450kAnno()
Illumina_Infinium_Human_Methylation_450K<-Illumina_Infinium_Human_Methylation_450K[!is.na(Illumina_Infinium_Human_Methylation_450K[,'pos']),]
intersect_cpg<-intersect(rownames(Illumina_Infinium_Human_Methylation_450K),rownames(MethylationProfile))
met_cg_allgene<-Illumina_Infinium_Human_Methylation_450K[intersect_cpg,]
}else{
met_cg_allgene = platform
}
MethylationProfile<-MethylationProfile[intersect_cpg,]
chromosomes<-unique(met_cg_allgene[,'chr'])
chromosomes<-chromosomes[order(chromosomes)]
res=NULL
correlation_res<-NULL
cat("(or you can try to use IdentifyMCB_parallel function instead)\n")
if (length(chromosomes)>1) {
bar<-utils::txtProgressBar(min = 1,max = length(chromosomes),char = "#",style = 3)
}
for(chr_no in seq_along(chromosomes)){
if (length(chromosomes)>1) {
utils::setTxtProgressBar(bar, chr_no)
}
chr_id<-chromosomes[chr_no]
met_x<-MethylationProfile
if (sum(met_cg_allgene[,'chr'] %in% chr_id)<=2) {
next
}
met_matrix<-met_x[met_cg_allgene[,'chr'] %in% chr_id,]
ann_matrix<-met_cg_allgene[met_cg_allgene[,'chr'] %in% chr_id,]
met_matrix<-met_matrix[order(as.numeric(ann_matrix[,'pos']),decreasing = FALSE),]
ann_matrix<-ann_matrix[order(as.numeric(ann_matrix[,'pos']),decreasing = FALSE),]
res<-NULL
total<-nrow(met_matrix)
for (i in seq_len(total)) {
# To investigate whether this indeed is evident in our data, we calculated Pearson
# correlation coefficients between beta values of any two CpGs positioned within
# one kilobase (or indicated by PositionGap) of one another
if (i+1<=total){
if(as.numeric(ann_matrix[i+1,'pos'])-as.numeric(ann_matrix[i,'pos'])<PositionGap &
ann_matrix[i+1,'chr']==ann_matrix[i,'chr']){
res<-rbind(res,c(unlist(stats::cor.test(met_matrix[i,],met_matrix[i+1,],method = method))[1:5]))
}else{
if (method == "pearson") res<-rbind(res,matrix(c(0,0,1,0,0),1,5))
else if (method == "spearman") res<-rbind(res,matrix(c(0,1,0,0,0),1,5))
else if (method == "kendall") res<-rbind(res,matrix(c(0,1,0,0,0),1,5))
}
}else{
if (method == "pearson") res<-rbind(res,matrix(c(0,0,1,0,0),1,5))
else if (method == "spearman") res<-rbind(res,matrix(c(0,1,0,0,0),1,5))
else if (method == "kendall") res<-rbind(res,matrix(c(0,1,0,0,0),1,5))
}
}
rownames(res)<-rownames(met_matrix)
correlation_res<-rbind(correlation_res,res)
}
if (verbose) {
cat("\n")
cat("Now gathering the results, please wait ...\n")
}
met_cg_allgene<-met_cg_allgene[rownames(correlation_res),]
MCB_flag<-rep("boundary",nrow(correlation_res))
if (method == "pearson") MCB_flag[as.numeric(correlation_res[,'estimate.cor'])>CorrelationThreshold]<-"MCB"
else if (method == "spearman") MCB_flag[as.numeric(correlation_res[,'estimate.rho'])>CorrelationThreshold]<-"MCB"
else if (method == "kendall") MCB_flag[as.numeric(correlation_res[,'estimate.tau'])>CorrelationThreshold]<-"MCB"
# This CpGs and next one are included.
MCBsites<-union(grep("MCB",MCB_flag),grep("MCB",MCB_flag)+1)
MCBsites<-MCBsites[order(MCBsites)]
FunctionResults$MCBsites<-rownames(MethylationProfile)[MCBsites]
MCB<-rep(NA,times=10)
names(MCB)<-c("MCB_no","start","end","CpGs","location","chromosomes",
"length","MCB_Gene","Feature_Type","CGI_Coordinate")
MCB_block=FALSE
MCB_no=1
total_res<-NULL
for (i in seq_along(MCB_flag)) {
flag<-MCB_flag[i]
if (MCB_block==FALSE&flag=="MCB"){
MCB["start"] <- i
MCB["MCB_no"] <- MCB_no
MCB_no=MCB_no+1
MCB_block = TRUE
}
if (MCB_block==TRUE&flag=="boundary"){
MCB["end"] <- i
CpG_names<-rownames(correlation_res)[as.numeric(MCB["start"]):(as.numeric(MCB["end"]))]
MCB["CpGs"]<- paste(CpG_names,collapse = " ")
MCB["location"]<-paste(met_cg_allgene[as.numeric(MCB["start"]),'chr'],":",
met_cg_allgene[as.numeric(MCB["start"]),'pos'],"-",
met_cg_allgene[as.numeric(MCB["end"]),'chr'],":",
met_cg_allgene[as.numeric(MCB["end"]),'pos'],collapse = "")
MCB["chromosomes"]<-met_cg_allgene[as.numeric(MCB["start"]),'chr']
MCB["MCB_Gene"]<-paste(unique(strsplit(paste(met_cg_allgene[CpG_names,'UCSC_RefGene_Name'],collapse = ";"),";")[[1]]),
collapse = " ")
MCB["Feature_Type"]<-paste(unique(strsplit(paste(met_cg_allgene[CpG_names,'Relation_to_Island'],collapse = ";"),";")[[1]]),
collapse = " ")
MCB["CGI_Coordinate"]<-paste(unique(met_cg_allgene[CpG_names,'Islands_Name']),
collapse = ";")
MCB["length"]<-as.numeric(met_cg_allgene[as.numeric(MCB["end"]),'pos'])-
as.numeric(met_cg_allgene[as.numeric(MCB["start"]),'pos'])
total_res<-rbind(total_res,MCB)
MCB_block = FALSE
}
}
total_res<-cbind(total_res,CpGs_num=as.numeric(total_res[,'end'])-as.numeric(total_res[,'start'])+1)
rownames(total_res)<-total_res[,'MCB_no']
#Some of 'cgxxxxx' code point to same CpG, those cg-code are removed.
total_res<-total_res[as.numeric(total_res[,'length'])>1,]
if (verbose) {
cat("Statistics (",nrow(total_res)," MCBs in total):\n")
for (chr_set in unique(total_res[,'chromosomes'])) {
cat(chr_set,": ")
cat("total MCBs:",length(total_res[total_res[,'chromosomes'] %in% chr_set,'chromosomes'])," ")
cat("Mean Length:",mean(as.numeric(total_res[total_res[,'chromosomes'] %in% chr_set,'length']))," ")
cat("(Range: ",range(as.numeric(total_res[total_res[,'chromosomes'] %in% chr_set,'length'])),")\n")
}
}
FunctionResults$MCBinformation<-total_res
return(FunctionResults)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.