R/simplifyColData.R

Defines functions trimColData mergeColData

Documented in mergeColData trimColData

#' Take a MultiAssayExperiment and include curated variables
#'
#' This function works on the `colData` of a
#' [`MultiAssayExperiment`][MultiAssayExperiment::MultiAssayExperiment-class]
#' object to merge curated variable columns or other clinical variables that
#' would like to be added. It is recommended that the user run the scripts in
#' the `MultiAssayExperiment.TCGA` repository that build the "enhanced" type of
#' data but not necessary if using different clinical data. Please see the
#' repository's README for more information.
#'
#' @param MultiAssayExperiment A
#'   [`MultiAssayExperiment`][MultiAssayExperiment::MultiAssayExperiment-class]
#'   object
#' @param colData A `DataFrame` or `data.frame` to merge with
#' clinical data in the `MultiAssayExperiment` object
#'
#' @return A
#'   [`MultiAssayExperiment`][MultiAssayExperiment::MultiAssayExperiment-class]
#'   object
#'
#' @examples
#'
#' library(MultiAssayExperiment)
#'
#' mergeColData(MultiAssayExperiment(), S4Vectors::DataFrame())
#'
#' @export mergeColData
mergeColData <- function(MultiAssayExperiment, colData) {
    if (!is(MultiAssayExperiment, "MultiAssayExperiment"))
        stop("Provide a valid MultiAssayExperiment object")
    if (!is(colData, "DataFrame") && !is.data.frame(colData))
        stop("'colData' must be 'DataFrame' or 'data.frame'")
    if (is.null(rownames(colData)) && length(colData))
        stop("'colData' data must have rownames")

    maeClinical <- colData(MultiAssayExperiment)
    mergedClin <- merge(maeClinical, colData,
        by = c("row.names", intersect(names(maeClinical), names(colData))),
        all = TRUE, sort = FALSE, stringsAsFactors = FALSE)

    rownames(mergedClin) <- mergedClin[["Row.names"]]
    mergedClin <- mergedClin[, names(mergedClin) != "Row.names", drop = FALSE]
    colData(MultiAssayExperiment) <- as(mergedClin, "DataFrame")
    MultiAssayExperiment
}

#' Minimize the number of variables in colData
#'
#' This function removes variables that have a high number of missing data
#' and contain keywords.
#'
#' @param multiassayexperiment A
#'   [`MultiAssayExperiment`][MultiAssayExperiment::MultiAssayExperiment-class]
#'   object with `colData`
#'
#' @param maxNAfrac (numeric default 0.2) A decimal between 0 and 1 to indicate
#'   the amount of NA values allowed per column
#'
#' @param keystring (character) A vector of keywords to match and remove
#'   variables
#'
#' @return A
#'   [`MultiAssayExperiment`][MultiAssayExperiment::MultiAssayExperiment-class]
#'   object
#'
#' @examples
#'
#' example(getSubtypeMap)
#'
#' (gbm_trimmed <- trimColData(gbm))
#'
#' head(colData(gbm_trimmed))[1:5]
#'
#' @export trimColData
trimColData <- function(multiassayexperiment, maxNAfrac = 0.2,
    keystring = c("portion", "analyte")) {
    if (!is(multiassayexperiment, "MultiAssayExperiment"))
        stop("Provide a 'MultiAssayExperiment' input")
    DF <- colData(multiassayexperiment)
    keystring <- na.omit(keystring)

    NAabove <- vapply(DF, function(x) mean(is.na(x)) >= maxNAfrac, logical(1L))

    keymat <- vapply(keystring, function(string)
        grepl(string, names(DF)), logical(length(DF)))
    keymatch <- apply(keymat, 1L, any)

    todrop <- NAabove | keymatch
    colData(multiassayexperiment) <- DF[, !todrop]

    multiassayexperiment
}
waldronlab/TCGAutils documentation built on Dec. 19, 2024, 2:11 p.m.