# server for pcmp app
# defines data flow for a pair of projection types, each shown
# in two view based on different choices of dimensions
basicServer <- function(sce) function(input, output, session) {
#SERVER <- function(input, output, session) {
requireNamespace("limma")
#
# add colnames as a column in colData -- uses .cellid field silently
#
sce$.cellid = colnames(sce)
#
# create a named data.frame combining the reducedDims with the colData
#
rd = reducedDims(sce)
nmeth = length(rd) # list of matrices of projected data
methnames = names(rd)
nrd = names(rd)
ncomps = vapply(rd, ncol, numeric(1))
stopifnot(all(ncomps == ncomps[1])) # requires balanced representation
# of all projections
ncomp <- ncomps[1]
indf = data.frame(do.call(cbind, as.list(rd)))
cn = paste0(nrd[1], 1:ncomp)
if (length(nrd) > 1) {
for (j in 2:length(nrd)) cn = c(cn, paste0(nrd[j], 1:ncomp))
}
colnames(indf) = cn
indf <- as.data.frame(cbind(indf, colData(sce)))
#
# build the formulas needed for d3scatter
#
fmlist = lapply(methnames, function(x) list())
names(fmlist) = methnames
for (i in 1:nmeth) {
curtags = paste0(methnames[i], 1:ncomp)
fmlist[[i]] = lapply(curtags, function(x) as.formula(c("~", x)))
names(fmlist[[i]]) = curtags
}
#
# build the shared data
#
enhDf = reactive({
indf$strat = colData(sce)[[input$pickedStrat]]
indf$key = 1:nrow(indf)
indf
})
shared_dat <- SharedData$new(enhDf) #enhDf, key=~key)
#
# set up reactive download entities: table of limma results, table of selected cells with selection sequence number
#
output$downloadData <- downloadHandler(
filename = function() {
paste('data-', Sys.Date(), '.csv', sep='')
},
content = function(con) {
write.csv(.GlobalEnv$.pcmpTab, con)
}
)
output$downloadData2 <- downloadHandler(
filename = function() {
paste('data-', Sys.Date(), '.csv', sep='')
},
content = function(con) {
dat = .GlobalEnv$.pcmpSelCells
nsel = length(dat)
selind = rep(1:nsel,sapply(dat,length))
ans = data.frame(group=selind, cellid=unlist(dat))
write.csv(ans, con)
}
)
#
# for the 'about' tab, show the SCE in use and some metadata
#
output$scedump = renderPrint({
print(sce)
})
output$scedump2 = renderPrint({
print(metadata(sce)[c("note", "origin")])
})
#
# produce the panels
#
output$scatter1 <- renderD3scatter({
methx = paste0(input$meth1, input$topx)
methy = paste0(input$meth1, input$topy)
d3scatter(shared_dat, fmlist[[input$meth1]][[methx]],
fmlist[[input$meth1]][[methy]], ~strat, width = "100%")
})
output$scatter2 <- renderD3scatter({
methx = paste0(input$meth2, input$topx)
methy = paste0(input$meth2, input$topy)
d3scatter(shared_dat, fmlist[[input$meth2]][[methx]],
fmlist[[input$meth2]][[methy]], ~strat, width = "100%")
})
output$scatter3 <- renderD3scatter({
methx = paste0(input$meth1, input$botx)
methy = paste0(input$meth1, input$boty)
d3scatter(shared_dat, fmlist[[input$meth1]][[methx]],
fmlist[[input$meth1]][[methy]], ~strat, width = "100%")
})
output$scatter4 <- renderD3scatter({
methx = paste0(input$meth2, input$botx)
methy = paste0(input$meth2, input$boty)
d3scatter(shared_dat, fmlist[[input$meth2]][[methx]],
fmlist[[input$meth2]][[methy]], ~strat, width = "100%")
})
# output$try3d <- renderScatterplotThree({
# colors = palette(rainbow(30))[ as.numeric(
# factor(colData(sce)[[input$pickedStrat]])) ]
# print(head(shared_dat))
# scatterplot3js(PC1, PC2, PC3, crosstalk=shared_dat, brush=TRUE,
# color=colors)
# })
#
# collect the information on selections so far
#
output$accum = renderPlot({
ans = list(cells = .GlobalEnv$.pcmpSelCells, limmaTab=.GlobalEnv$.pcmpTab)
tmp = new("PcmpSels", cellSets=ans$cells, geneTable=ans$limmaTab)
replay(sce, tmp, input$meth1, input$botx, input$boty)
})
#
# very rudimentary approach to acquiring a signature of a selected group of cells
# use limma on log-transformed counts comparing selected to non-selected
# could do something to balance sample sizes ...
#
output$summary <- DT::renderDataTable({
df <- shared_dat$data(withSelection = TRUE) %>%
filter(selected_ | is.na(selected_)) %>%
mutate(selected_ = NULL)
sel=rep(0, ncol(sce))
names(sel) = colnames(sce)
sel[df$.cellid] = 1
mm = stats::model.matrix(~sel, data=data.frame(sel=sel))
showNotification(paste("starting table processing", date()), id="limnote")
X = log(assay(sce)+1)
f1 = lmFit(X, mm)
ef1 = eBayes(f1)
options(digits=3)
tt = topTable(ef1, 2, n=20)
if (!(".pcmpSelNum" %in% ls(.GlobalEnv, all.names=TRUE))) assign(".pcmpSelNum", 1, .GlobalEnv)
else assign(".pcmpSelNum", .GlobalEnv$.pcmpSelNum + 1, .GlobalEnv)
if (!(".pcmpSelCells" %in% ls(.GlobalEnv, all.names=TRUE))) assign(".pcmpSelCells", list(df$.cellid), .GlobalEnv)
else assign(".pcmpSelCells", c(.GlobalEnv$.pcmpSelCells, list(df$.cellid)), .GlobalEnv)
tt = cbind(tt, selnum=.GlobalEnv$.pcmpSelNum[1])
if (!(".pcmpTab" %in% ls(.GlobalEnv, all.names=TRUE))) assign(".pcmpTab", tt, .GlobalEnv)
else assign(".pcmpTab", rbind(.GlobalEnv$.pcmpTab, tt), .GlobalEnv)
ans = DT::formatRound(DT::datatable(tt), 1:7, digits=3)
removeNotification(id="limnote")
ans
})
#
# prepare stop button
#
observe({
if(input$btnSend > 0)
isolate({
stopApp(returnValue=0)
})
})
} # end server
library(SingleCellExperiment)
library(pcmp)
library(pcmpshin)
library(limma)
load("rscmou.rda")
basicServer(rscmou)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.