calcGeneSetStat <- function(selectedStats, method, statistics=NULL, gseaParam) {
# Fisher:
if(method == "fisher") {
geneSetStatistic <- 2*(sum(-1*log(selectedStats)))
# Stouffer & Reporter
} else if(method %in% c("stouffer","reporter")) {
geneSetStatistic <- sum(qnorm(selectedStats,lower.tail=FALSE)) / sqrt(length(selectedStats))
# Tail strength:
} else if(method == "tailStrength") {
m <- length(selectedStats)
geneSetStatistic <- (1/m)*sum(1-sort(selectedStats)*(m+1)/(1:m))
# Wilcoxon rank sum:
} else if(method == "wilcoxon_less") {
geneSetStatistic <- unlist(wilcox.test(selectedStats, statistics, alternative="less", conf.int=FALSE)[c(1,3)])
} else if(method == "wilcoxon_greater") {
geneSetStatistic <- unlist(wilcox.test(selectedStats, statistics, alternative="greater", conf.int=FALSE)[c(1,3)])
} else if(method == "wilcoxon_two.sided") {
geneSetStatistic <- unlist(wilcox.test(selectedStats, statistics, alternative="two.sided", conf.int=FALSE)[c(1,3)])
} else if(method == "wilcoxon_fast") {
m <- length(selectedStats)
#geneSetStatistic <- sum(rank(c(selectedStats,statistics[statistics <= max(selectedStats)]))[1:m])-m*(m+1)/2
geneSetStatistic <- sum(rank(c(selectedStats,statistics))[1:m])-m*(m+1)/2
# Mean:
} else if(method == "mean") {
geneSetStatistic <- mean(selectedStats)
# Median:
} else if(method == "median") {
geneSetStatistic <- median(selectedStats)
# Sum:
} else if(method == "sum") {
geneSetStatistic <- sum(selectedStats)
# Maxmean:
} else if(method == "maxmean") {
m <- length(selectedStats)
sPlus <- sum(selectedStats[selectedStats > 0])/m
sMinus <- -sum(selectedStats[selectedStats < 0])/m
geneSetStatistic <- max(c(sPlus,sMinus))
# GSEA:
} else if(method == "gsea") {
S <- selectedStats # index of genes in gene set
r <- statistics # sorted gene-level statistics
p <- gseaParam
S <- sort(S)
m <- length(S)
N <- length(r)
NR <- (sum(abs(r[S])^p))
rAdj <- abs(r[S])^p
rCumSum <- cumsum(rAdj) / NR
tops <- rCumSum - (S - seq_along(S)) / (N - m) # tops/local maxima in the running sum plot
bottoms <- tops - rAdj / NR # bottoms/local minima in the running sum plot
maxP <- max(c(tops,0), na.rm=TRUE)
minP <- min(c(bottoms,0), na.rm=TRUE)
if(maxP > -minP) {
geneSetStatistic <- maxP
} else {
geneSetStatistic <- minP
}
# PAGE:
} else if(method == "page") {
mu <- mean(statistics)
delta <- stats::sd(statistics)
Sm <- mean(selectedStats)
m <- length(selectedStats)
geneSetStatistic <- (Sm - mu)*sqrt(m)/delta
}
return(geneSetStatistic)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.