baseRandForest | R Documentation |
Prediction by random forest with different settings: 'probability', 'classification' and 'regression'.
baseRandForest( trainData, testData, predMode = c("classification", "probability", "regression"), paramlist = list(ntree = 2000, nthreads = 20) )
trainData |
The input training dataset. The first column is the label or the output. For binary classes, 0 and 1 are used to indicate the class member. |
testData |
The input test dataset. The first column is the label or the output. For binary classes, 0 and 1 are used to indicate the class member. |
predMode |
The prediction mode. Available options are c('probability', 'classification', 'regression'). |
paramlist |
A set of model parameters defined in an R list object. The valid option: list(ntree, nthreads). 'ntree' is the number of trees used. The defaul is 2000. 'nthreads' is the number of threads used for computation. The default is 20. |
The predicted output for the test data.
Junfang Chen
## Load data methylfile <- system.file('extdata', 'methylData.rds', package='BioMM') methylData <- readRDS(methylfile) dataY <- methylData[,1] ## test a subset of genome-wide methylation data at random methylSub <- data.frame(label=dataY, methylData[,c(2:2001)]) trainIndex <- sample(nrow(methylSub), 12) trainData = methylSub[trainIndex,] testData = methylSub[-trainIndex,] library(ranger) predY <- baseRandForest(trainData, testData, predMode='classification', paramlist=list(ntree=300, nthreads=20)) testY <- testData[,1] accuracy <- classifiACC(dataY=testY, predY=predY) print(accuracy)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.