# modification on git from copied files
kCluster <-
function(cD, maxK = 100, matrixFile = NULL, replicates = NULL, algorithm = "Lloyd", B = 1000, sdm = 1)
{
kstats <- function(k, x, cx) {
if(k > length(unique(x))) return(rep(NA, 3))
if(k == length(x)) {
#if(is.null(replicates) || length(replicates) == length(unique(replicates))) {
clustK <- list(centers = x, cluster = seq_along(x))
#} else return(c(NA, NA))
} else {
clustK <- suppressWarnings(kmeans(x, k, iter.max = 1000, nstart = 100, algorithm = algorithm))
if(any(is.na(clustK$centers))) clustK <- suppressWarnings(kmeans(x, k, iter.max = 1000, nstart = 100, algorithm = algorithm))
#store the clustering and orderings as a string
# the match bit makes sure that identical clusterings have identical numberings
#if(forceReplicates && any(sapply(lapply(split(clustK$cluster, replicates), unique), length) > 1)) return(rep(NA, 2))
}
if(forceReplicates) cluster <- clustK$cluster[match(replicates, levels(replicates))] else cluster <- clustK$cluster
clusterings <- paste(match(cluster, (unique(cluster))), collapse = ":")
orderings <- paste(order(clustK$centers[unique(cluster)]), collapse = "<")
clusterOrder <- paste(clusterings, orderings, sep = "-")
# statistic gets stored as a string too, with marginal loss of precision. Could fix it, but who cares
# stat <- max(sapply(seq_len(k), function(kk) {
# mx <- suppressWarnings(max(abs(split(cx, factor(cluster, levels = seq_len(k)))[[kk]] - clustK$centers[kk]))#
# mx
# }))
stat = max(sapply(split(cx, factor(cluster, levels = seq_len(k))), function(kx) diff(range(kx))))
#wss <- sum(sapply(split(cx, factor(cluster, levels = seq_len(k))), function(kx) sum((kx - mean(kx))^2)))
#if(k > 1) dstat <- stat / min(diff(sort(clustK$centers))) else dstat <- NA
#W <- sum(clustK$withinss)
dstat <- stat / diff(range(cx))
c(clusterOrder, stat, dstat)
}
if(inherits(cD, "countData")) {
dat <- cD@data
dat[dat == 0] <- 1
dat <- log2(t(t(dat) / as.vector(libsizes(cD)) * mean(libsizes(cD))))
replicates <- cD@replicates
} else dat <- as.matrix(cD)
if(is.null(replicates)) {
forceReplicates <- FALSE
} else {
if(!is.factor(replicates)) replicates <- as.factor(replicates)
forceReplicates <- TRUE
mdat <- do.call("cbind", lapply(levels(replicates), function(rep) apply(dat[,replicates == rep], 1, median)))
if(length(replicates) != ncol(cD)) stop("If replicates are provided, there must be the same number of elements in the 'replicates' vector as there are columns in the 'cD' object.")
}
#print(forceReplicates)
# this looks like it's something like Tibshirani's gap statistic - simulate data on a uniform distribution
mx <- matrix(runif(n = B * ncol(dat), min = 0, max = 1), ncol = ncol(dat))
if(forceReplicates) mxx <- t(apply(mx, 1, function(mxx) sapply(split(mxx, replicates), median))) else mxx <- mx
mpK <- min(ncol(mxx), maxK)
# calculate kstats based on that uniform distribution
message("Bootstrapping distributions...", appendLF = TRUE)
pseudoW <- do.call("rbind", bplapply(seq_len(nrow(mx)), function(kk)
do.call("cbind", lapply(seq_len(mpK), kstats, x = mxx[kk,], cx = mx[kk,]))[2,]))
#, BPPARAM = BP(workers = as.integer(cores), progressbar = TRUE)))
message("done!")
message("K-means processing...", appendLF = FALSE)
koverk <- function(ii, maxK, forceReplicates, replicates) {
if(forceReplicates) x <- mdat[ii,] else x <- dat[ii,]
cx <- dat[ii,]
genestats <- sapply(seq_len(min(length(x), maxK)), kstats, x = x, cx = cx)
bootExp <- function(x, cx, replicates, forceReplicates) {
rx <- range(cx)
if(diff(rx) == 0) return(1)
# uniform distribution gets rescaled here to range of data
lWs <- split(log(as.numeric(pseudoW) * diff(rx)), rep(seq_len(mpK), each = B))
elWk <- sapply(lWs, mean)
lW <- log(as.numeric(genestats[2,seq_len(mpK)]))
gap <- elWk - lW
sdk <- sqrt(1 + 1/B) * sapply(lWs, sd)
suppressWarnings(clustNum <- min(which(gap[-length(gap)] > gap[-1] - sdm * sdk[-1])))
#mono <- gap[-length(gap)] > gap[-1] - sdm * sdk[-1]
clustNum
}
clustNum <- bootExp(x, cx, replicates = replicates, forceReplicates = forceReplicates)
clustNumM <- bootExp(x, x, replicates = NULL, forceReplicates = FALSE)
list(gs = genestats, clustNum, clustNumM)
}
# this bit does all possible clusterings, parallelised
kgene <- do.call("cbind", bplapply(seq_len(nrow(dat)), koverk, maxK = maxK, forceReplicates = forceReplicates, replicates = replicates))#, BPPARAM = BP(workers = as.integer(cores), progressbar = TRUE)))
message(".done!")
monos <- unlist(kgene[2,]) == 1
# fix dimensions of matrix
kgeneS <- do.call("cbind", kgene[1,])
# separate out clusterings and stats
clusterings <- matrix(kgeneS[1,], ncol = nrow(dat))
clusterings[is.na(clusterings)] <- FALSE
stats <- matrix(as.numeric(kgeneS[3,]), ncol = nrow(dat))
stats <- round(stats, 3)
#temporary matrix prototype
infmat <- matrix(1, nrow = nrow(stats), ncol = ncol(stats))
stats[1,monos] <- 0
# stats[seq.int(2,nrow(stats)),monos] <- Inf
if(!is.null(matrixFile)) {
if(substr(matrixFile, nchar(matrixFile) -2, nchar(matrixFile)) != ".gz") {
message("Matrix file will be gzipped; appending '.gz' to filename supplied")
matrixFile <- paste(matrixFile, ".gz", sep = "")
}
if(file.exists(matrixFile)) file.remove(matrixFile)
gzfile <- gzfile(matrixFile, "w")
}
# write one by one the stats for each gene. Can't trivially parallelise this bit or you will have multiple threads writing to same file. Could parallelise with writes to separate files followed by cat and sort but this would take it out of pure R.
message("Comparing clusterings...", appendLF = FALSE)
if(!is.null(matrixFile)) {
lapplyFun <- lapply
writeLines(paste(c("", rownames(dat)), collapse = "\t"), gzfile)
} else lapplyFun <- bplapply
kAM <- do.call("rbind", lapplyFun(seq_len(ncol(clusterings)), function(ii) {
if(sample(seq_len(100), 1) == 1) message(".", appendLF = FALSE)
# fill in temporary matrix with valid statistics for each comparison
tmat <- infmat; tmat[(clusterings[,ii] == clusterings)] <- stats[clusterings[,ii] == clusterings]
# update temporary matrix with stats from current gene (if bigger)
tmat <- apply(cbind(stats[,ii], tmat), 1, function(x) pmax(x[-1], x[1]))
# select minimum statistic from each column of temporary matrix and write
minstats <- do.call(pmin, c(lapply(seq_len(ncol(tmat)), function(i)tmat[,i]), list(na.rm = TRUE)))
if(!is.null(matrixFile))
writeLines(paste(rownames(dat)[ii], paste(minstats, collapse = "\t"), sep = "\t"), gzfile)
minstats[seq_len(ii)] <- 1
c(id = ii, pair.id = which.min(minstats), stat = min(minstats))
}))#, BPPARAM = BP(workers = as.integer(cores), progressbar = TRUE)))
if(!is.null(matrixFile)) close(gzfile)
message(".done!")
kAM
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.