#' Create `odm` object from Cell Ranger
#'
#' `create_odm_from_cellranger()` initializes an `odm` object, taking as input the output of one or more calls to Cell Ranger count. The number of `odm` objects returned corresponds to the number of modalities in the input data. Additionally, the cell-wise covariate data frame is computed and returned. `create_odm_from_cellranger()` supports the Cell Ranger modalities "Gene Expression", "CRISPR Guide Capture", and "Antibody Capture".
#'
#' @note The `grna_target_data_frame` is relevant only for CRISPR screen data (i.e., data for which the "CRISPR Guide Capture" modality is present). In single-cell CRISPR screens, gRNAs are delivered to cells via a viral vector. Some recent single-cell CRISPR screens involve a special design in which each viral vector harbors multiple gRNAs. For example, [Replogle 2022](https://pubmed.ncbi.nlm.nih.gov/35688146/) conducted a screen in which each viral vector contained two gRNAs, each targeting the same site. In such screens, users may wish to "collapse" the gRNA count matrix by summing over the UMI counts of gRNAs contained on the same vector. To do so, users can pass the argument `grna_target_data_frame`, which is a data frame containing two columns: `grna_id` and `vector_id`. `grna_id` should coincide with the gRNA IDs as contained within the `features.tsv` file, and `vector_id` should be a string indicating the vector to which a given gRNA ID belongs. The expression vectors of gRNAs contained within the same vector are summed.
#' @note The arguments `chunk_size` and `compression_level` control the extent to which the backing `.odm` files are compressed, with higher values corresponding to smaller file sizes (albeit possibly longer read and write times).
#'
#' @param directories_to_load a character vector specifying the locations of the directories to load. Each directory should contain the files "matrix.mtx.gz" and "features.tsv.gz" (and optionally "barcodes.tsv.gz", which is ignored).
#' @param directory_to_write a string indicating the directory in which to write the backing .odm files.
#' @param write_cellwise_covariates (optional; default `TRUE`) a logical value indicating whether to write the cellwise covariate data frame to disk (`TRUE`) in addition to returning it from `create_odm_from_cellranger()`.
#' @param chunk_size (optional; default `1000L`) a positive integer specifying the chunk size to use to store the data in the backing HDF5 file.
#' @param compression_level (optional; default `3L`) an integer in the inveral \[0, 9\] specifying the compression level to use to store the data in the backing HDF5 file.
#' @param grna_target_data_frame (optional) a data frame mapping each gRNA ID to its target. Relevant only if the CRISPR modality is present within the data. (See note.)
#'
#' @return a list containing the odm object(s) and cellwise covariates.
#' @export
#'
#' @examples
#' library(sceptredata)
#' directories_to_load <- paste0(
#' system.file("extdata", package = "sceptredata"),
#' "/highmoi_example/gem_group_", c(1, 2)
#' )
#' directory_to_write <- tempdir()
#' out_list <- create_odm_from_cellranger(
#' directories_to_load = directories_to_load,
#' directory_to_write = directory_to_write,
#' )
create_odm_from_cellranger <- function(directories_to_load, directory_to_write, write_cellwise_covariates = TRUE,
chunk_size = 1000L, compression_level = 3L, grna_target_data_frame = NULL) {
# 0. check that directory to write is valid; create it if it does not yet exist
directory_to_write <- expand_tilde(directory_to_write)
if (is.null(directory_to_write)) {
stop("`directory_to_write` cannot be `NULL`.")
}
if (!dir.exists(directory_to_write)) dir.create(path = directory_to_write, recursive = TRUE)
# 1. check that directories exist
for (curr_directory in directories_to_load) {
if (!dir.exists(curr_directory)) stop("The directory ", curr_directory, " does not exist.")
}
# 2. create the list of features and matrix files (exclude cell barcodes)
input_files <- lapply(X = directories_to_load, function(curr_directory) {
fs <- list.files(curr_directory)
grep_strs <- c("*features.tsv($|.gz)", "*matrix.mtx($|.gz)")
out <- vapply(grep_strs, function(grep_str) {
file_names <- grep(pattern = grep_str, x = fs, value = TRUE)
if (length(file_names) >= 2L) {
stop("There are multiple ", grep_str, " files within the directory ", curr_directory, ".")
}
if (length(file_names) == 0L) {
stop("The directory ", curr_directory, " contains zero ", grep_str, " files.")
}
return(paste0(curr_directory, "/", file_names))
}, FUN.VALUE = character(1)) |> stats::setNames(c("features", "matrix"))
}) |> stats::setNames(NULL)
matrix_fps <- vapply(X = input_files, FUN = function(i) i[["matrix"]], FUN.VALUE = character(1))
# 3. obtain the feature data frame
feature_df <- data.table::fread(file = input_files[[1]][["features"]],
colClasses = c("character", "character", "character"),
col.names = c("feature_id", "feature_name", "modality"), header = FALSE)
modality_names <- unique(feature_df$modality)
if (!(all(modality_names %in% c("Gene Expression", "CRISPR Guide Capture", "Antibody Capture")))) {
stop("The modality names must be 'Gene Expression' or 'CRISPR Guide Capture'.")
}
# 4. determine the start idx of each modality in the feature df
modality_start_idx_features <- vapply(modality_names, function(modality_name) {
feature_df[list(modality_name), which = TRUE, mult = "first", on = "modality"] - 1L
}, FUN.VALUE = integer(1))
modality_start_idx_features <- c(modality_start_idx_features, nrow(feature_df))
# 5. obtain the feature ids of each modality
feature_ids <- feature_df$feature_id
modality_feature_ids <- lapply(seq_along(modality_names), function(k) {
curr_modality_features <- feature_ids[seq(modality_start_idx_features[k], modality_start_idx_features[k + 1L] - 1L) + 1L]
}) |> stats::setNames(modality_names)
# 6. obtain the feature names of each modality
feature_names <- feature_df$feature_name
modality_feature_names <- lapply(seq_along(modality_names), function(k) {
curr_modality_features <- feature_names[seq(modality_start_idx_features[k], modality_start_idx_features[k + 1L] - 1L) + 1L]
}) |> stats::setNames(modality_names)
# 7. determine idxs of MT- features
mt_feature_idxs <- lapply(seq_along(modality_names), function(k) {
curr_modality_features <- feature_names[seq(modality_start_idx_features[k], modality_start_idx_features[k + 1L] - 1L) + 1L]
grep(pattern = "^MT-", x = curr_modality_features, ignore.case = TRUE) - 1L # - modality_start_idx_features[k]
}) |> stats::setNames(modality_names)
# 8 prepare feature_idx to vector_idx map
feature_idx_to_vector_idx_map <- NULL
n_features_per_modality <- diff(modality_start_idx_features)
if (!is.null(grna_target_data_frame)) {
feature_idx_to_vector_idx_map <- generate_grna_idx_to_vector_idx_map(grna_target_data_frame = grna_target_data_frame,
modality_start_idx_features = modality_start_idx_features,
ordered_grna_ids = modality_feature_names[["CRISPR Guide Capture"]])
modality_feature_ids[["CRISPR Guide Capture"]] <- unique(grna_target_data_frame$vector_id)
n_features_per_modality[modality_names == "CRISPR Guide Capture"] <- length(unique(grna_target_data_frame$vector_id))
}
# 9. round 1
round_1_out <- process_input_files_round_1(matrix_fps = matrix_fps,
modality_names = modality_names,
modality_start_idx_features = modality_start_idx_features,
feature_idx_to_vector_idx_map = feature_idx_to_vector_idx_map,
n_features_per_modality = n_features_per_modality)
# 10. initialize cellwise covariates
cellwise_covariates <- initialize_cellwise_covariates(modality_names = modality_names,
n_cells = round_1_out$n_cells)
# 11. obtain file paths to odms
new_modality_names <- update_modality_names(modality_names)
file_names_in <- vapply(new_modality_names, function(new_modality_name) {
if (!dir.exists(directory_to_write)) dir.create(directory_to_write, recursive = TRUE)
paste0(directory_to_write, "/", new_modality_name, ".odm")
}, FUN.VALUE = character(1))
# 12. sample integer id
integer_id <- sample(x = seq(0L, .Machine$integer.max), size = 1L)
# 13. initialize odms
row_ptr_list <- initialize_odms(modality_names = modality_names,
file_names_in = file_names_in,
n_nonzero_features_vector_list = round_1_out$n_nonzero_features_vector_list,
modality_feature_ids = modality_feature_ids,
n_cells = round_1_out$n_cells,
integer_id = integer_id,
chunk_size = chunk_size,
compression_level = compression_level)
# 14. round 2
process_input_files_round_2(matrix_fps = matrix_fps,
file_names_in = file_names_in,
modality_names = modality_names,
modality_start_idx_features = modality_start_idx_features,
row_ptr_list = row_ptr_list,
modality_start_idx_mtx_list = round_1_out$modality_start_idx_mtx_list,
mt_feature_idxs = mt_feature_idxs,
cellwise_covariates = cellwise_covariates,
feature_idx_to_vector_idx_map = feature_idx_to_vector_idx_map)
gc() |> invisible()
# 15. save the covariates
dt <- preprare_output_covariate_dt(cellwise_covariates = cellwise_covariates,
new_modality_names = new_modality_names,
n_cells_per_batch = round_1_out$n_cells_per_batch,
modality_feature_ids = modality_feature_ids)
if (write_cellwise_covariates) saveRDS(dt, file = paste0(directory_to_write, "/cellwise_covariates.rds"))
# 16. return the odms and cell covariates
l <- lapply(seq_along(modality_names), function(i) {
initialize_odm_from_backing_file(file_names_in[i])
}) |> stats::setNames(new_modality_names)
l[["cellwise_covariates"]] <- dt
return(l)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.