## pre code {
## white-space: pre !important;
## overflow-x: scroll !important;
## word-break: keep-all !important;
## word-wrap: initial !important;
## }
## ----style, echo = FALSE, results = 'asis'----------------
BiocStyle::markdown()
options(width=60, max.print=1000)
knitr::opts_chunk$set(
eval=as.logical(Sys.getenv("KNITR_EVAL", "TRUE")),
cache=as.logical(Sys.getenv("KNITR_CACHE", "TRUE")),
tidy.opts=list(width.cutoff=60), tidy=TRUE)
## ----setup, echo=FALSE, message=FALSE, warning=FALSE, eval=FALSE----
## suppressPackageStartupMessages({
## library(systemPipeR)
## })
## ----load_systempiper, eval=TRUE, message=FALSE, warning=FALSE----
library(systemPipeR)
## ----genNew_wf, eval=FALSE--------------------------------
## systemPipeRdata::genWorkenvir(workflow = "riboseq", mydirname = "riboseq")
## setwd("riboseq")
## ----load_targets, eval=TRUE------------------------------
targetspath <- system.file("extdata", "targetsPE.txt", package="systemPipeR")
targets <- read.delim(targetspath, comment.char = "#")[,1:4]
targets
## ----create_workflow, message=FALSE, eval=FALSE-----------
## library(systemPipeR)
## sal <- SPRproject()
## sal
## ----load_SPR, message=FALSE, eval=FALSE, spr=TRUE--------
## cat(crayon::blue$bold("To use this workflow, following R packages are expected:\n"))
## cat(c("'rtracklayer", "GenomicFeatures", "grid", "BiocParallel", "DESeq2",
## "ape", "edgeR", "biomaRt", "BBmisc", "pheatmap","ggplot2'\n"), sep = "', '")
## ###pre-end
## appendStep(sal) <- LineWise(
## code = {
## library(systemPipeR)
## library(rtracklayer)
## library(GenomicFeatures)
## library(ggplot2)
## library(grid)
## library(DESeq2, quietly=TRUE)
## library(ape, warn.conflicts=FALSE)
## library(edgeR)
## library(biomaRt)
## library(BBmisc) # Defines suppressAll()
## library(pheatmap)
## library(BiocParallel)
## }, step_name = "load_SPR")
## ----preprocessing, message=FALSE, eval=FALSE, spr=TRUE----
## appendStep(sal) <- SYSargsList(
## step_name = "preprocessing",
## targets = "targetsPE.txt", dir = TRUE,
## wf_file = "preprocessReads/preprocessReads-pe.cwl",
## input_file = "preprocessReads/preprocessReads-pe_riboseq.yml",
## dir_path = system.file("extdata/cwl", package = "systemPipeR"),
## inputvars = c(
## FileName1 = "_FASTQ_PATH1_",
## FileName2 = "_FASTQ_PATH2_",
## SampleName = "_SampleName_"
## ),
## dependency = c("load_SPR"))
## ----preprocessing_check, message=FALSE, eval=FALSE-------
## yamlinput(sal, step="preprocessing")$Fct
## # [1] "'trimbatch(fq, pattern=\"ACACGTCT\", internalmatch=FALSE, minpatternlength=6, Nnumber=1, polyhomo=50, minreadlength=16, maxreadlength=101)'"
## cmdlist(sal, step = "preprocessing", targets = 1 )
## ----fastq_report, eval=FALSE, message=FALSE, spr=TRUE----
## appendStep(sal) <- LineWise(
## code = {
## fq_files <- getColumn(sal, "preprocessing", "targetsWF", column = 1)
## fqlist <- seeFastq(fastq = fq_files, batchsize = 10000, klength = 8)
## png("./results/fastqReport.png", height = 162, width = 288 * length(fqlist))
## seeFastqPlot(fqlist)
## dev.off()
## },
## step_name = "fastq_report",
## dependency = "preprocessing"
## )
## ----hisat2_index, eval=FALSE, spr=TRUE-------------------
## appendStep(sal) <- SYSargsList(
## step_name = "hisat2_index",
## dir = FALSE,
## targets=NULL,
## wf_file = "hisat2/hisat2-index.cwl",
## input_file="hisat2/hisat2-index.yml",
## dir_path="param/cwl",
## dependency = "load_SPR"
## )
## ----hisat2_mapping, eval=FALSE, spr=TRUE-----------------
## appendStep(sal) <- SYSargsList(
## step_name = "hisat2_mapping",
## dir = TRUE,
## targets ="targetsPE.txt",
## wf_file = "workflow-hisat2/workflow_hisat2-pe.cwl",
## input_file = "workflow-hisat2/workflow_hisat2-pe.yml",
## dir_path = "param/cwl",
## inputvars = c(FileName1 = "_FASTQ_PATH1_", FileName2 = "_FASTQ_PATH2_",
## SampleName = "_SampleName_"),
## dependency = c("hisat2_index")
## )
## ----bowtie2_alignment, eval=FALSE------------------------
## cmdlist(sal, step="hisat2_mapping", targets=1)
## ----align_stats, eval=FALSE, spr=TRUE--------------------
## appendStep(sal) <- LineWise(
## code = {
## fqpaths <- getColumn(sal, step = "hisat2_mapping", "targetsWF", column = "FileName1")
## bampaths <- getColumn(sal, step = "hisat2_mapping", "outfiles", column = "samtools_sort_bam")
## read_statsDF <- alignStats(args = bampaths, fqpaths = fqpaths, pairEnd = TRUE)
## write.table(read_statsDF, "results/alignStats.xls", row.names=FALSE, quote=FALSE, sep="\t")
## },
## step_name = "align_stats",
## dependency = "hisat2_mapping")
## ----bam_IGV, eval=FALSE, spr=TRUE------------------------
## appendStep(sal) <- LineWise(
## code = {
## bampaths <- getColumn(sal, step = "hisat2_mapping", "outfiles",
## column = "samtools_sort_bam")
## symLink2bam(
## sysargs = bampaths, htmldir = c("~/.html/", "somedir/"),
## urlbase = "http://cluster.hpcc.ucr.edu/~tgirke/",
## urlfile = "./results/IGVurl.txt")
## },
## step_name = "bam_IGV",
## dependency = "hisat2_mapping",
## run_step = "optional"
## )
## ----genFeatures, eval=FALSE, spr=TRUE--------------------
## appendStep(sal) <- LineWise(
## code = {
## txdb <- suppressWarnings(makeTxDbFromGFF(file="data/tair10.gff", format="gff3", dataSource="TAIR", organism="Arabidopsis thaliana"))
## feat <- genFeatures(txdb, featuretype="all", reduce_ranges=TRUE, upstream=1000,
## downstream=0, verbose=TRUE)
## },
## step_name = "genFeatures",
## dependency = "hisat2_mapping",
## run_step = "mandatory"
## )
## ----featuretypeCounts, eval=FALSE, spr=TRUE--------------
## appendStep(sal) <- LineWise(
## code = {
## outpaths <- getColumn(sal, step = "hisat2_mapping", "outfiles", column = "samtools_sort_bam")
## fc <- featuretypeCounts(bfl=BamFileList(outpaths, yieldSize=50000), grl=feat,
## singleEnd=FALSE, readlength=NULL, type="data.frame")
## p <- plotfeaturetypeCounts(x=fc, graphicsfile="results/featureCounts.png",
## graphicsformat="png", scales="fixed", anyreadlength=TRUE,
## scale_length_val=NULL)
## },
## step_name = "featuretypeCounts",
## dependency = "genFeatures",
## run_step = "mandatory"
## )
## ----featuretypeCounts_length, eval=FALSE, spr=TRUE-------
## appendStep(sal) <- LineWise(
## code = {
## fc2 <- featuretypeCounts(bfl=BamFileList(outpaths, yieldSize=50000), grl=feat,
## singleEnd=TRUE, readlength=c(74:76,99:102), type="data.frame")
## p2 <- plotfeaturetypeCounts(x=fc2, graphicsfile="results/featureCounts2.png",
## graphicsformat="png", scales="fixed", anyreadlength=FALSE,
## scale_length_val=NULL)
## },
## step_name = "featuretypeCounts_length",
## dependency = "featuretypeCounts",
## run_step = "mandatory"
## )
## ----pred_ORF, eval=FALSE, spr=TRUE-----------------------
## appendStep(sal) <- LineWise(
## code = {
## txdb <- suppressWarnings(makeTxDbFromGFF(file="data/tair10.gff", format="gff3", organism="Arabidopsis"))
## futr <- fiveUTRsByTranscript(txdb, use.names=TRUE)
## dna <- extractTranscriptSeqs(FaFile("data/tair10.fasta"), futr)
## uorf <- predORF(dna, n="all", mode="orf", longest_disjoint=TRUE, strand="sense")
## },
## step_name = "pred_ORF",
## dependency = "featuretypeCounts_length"
## )
## ----scale_ranges, eval=FALSE, spr=TRUE-------------------
## appendStep(sal) <- LineWise(
## code = {
## grl_scaled <- scaleRanges(subject=futr, query=uorf, type="uORF", verbose=TRUE)
## export.gff3(unlist(grl_scaled), "results/uorf.gff")
## },
## step_name = "scale_ranges",
## dependency = "pred_ORF"
## )
## ----translate, eval=FALSE, spr=TRUE----------------------
## appendStep(sal) <- LineWise(
## code = {
## translate(unlist(getSeq(FaFile("data/tair10.fasta"), grl_scaled[[7]])))
## },
## step_name = "translate",
## dependency = "scale_ranges"
## )
## ----add_features, eval=FALSE, spr=TRUE-------------------
## appendStep(sal) <- LineWise(
## code = {
## feat <- genFeatures(txdb, featuretype="all", reduce_ranges=FALSE)
## feat <- c(feat, GRangesList("uORF"=unlist(grl_scaled)))
## },
## step_name = "add_features",
## dependency = c("genFeatures", "scale_ranges")
## )
## ----pred_sORFs, eval=FALSE, spr=TRUE---------------------
## appendStep(sal) <- LineWise(
## code = {
## feat <- genFeatures(txdb, featuretype="intergenic", reduce_ranges=TRUE)
## intergenic <- feat$intergenic
## strand(intergenic) <- "+"
## dna <- getSeq(FaFile("data/tair10.fasta"), intergenic)
## names(dna) <- mcols(intergenic)$feature_by
## sorf <- suppressWarnings(predORF(dna, n="all", mode="orf", longest_disjoint=TRUE, strand="both"))
## sorf <- sorf[width(sorf) > 60] # Remove sORFs below length cutoff, here 60bp
## intergenic <- split(intergenic, mcols(intergenic)$feature_by)
## grl_scaled_intergenic <- scaleRanges(subject=intergenic, query=sorf, type="sORF", verbose=TRUE)
## export.gff3(unlist(grl_scaled_intergenic), "sorf.gff")
## translate(getSeq(FaFile("data/tair10.fasta"), unlist(grl_scaled_intergenic)))
## },
## step_name = "pred_sORFs",
## dependency = c("add_features")
## )
## ----binned_CDS_coverage, eval=FALSE, spr=TRUE------------
## appendStep(sal) <- LineWise(
## code = {
## grl <- cdsBy(txdb, "tx", use.names=TRUE)
## fcov <- featureCoverage(bfl=BamFileList(outpaths[1:2]), grl=grl[1:4],
## resizereads=NULL, readlengthrange=NULL, Nbins=20, method=mean,
## fixedmatrix=FALSE, resizefeatures=TRUE, upstream=20,
## downstream=20, outfile="results/featureCoverage.xls",
## overwrite=TRUE)
## },
## step_name = "binned_CDS_coverage",
## dependency = c("add_features")
## )
## ----coverage_upstream_downstream, eval=FALSE, spr=TRUE----
## appendStep(sal) <- LineWise(
## code = {
## fcov <- featureCoverage(bfl=BamFileList(outpaths[1:4]), grl=grl[1:12], resizereads=NULL,
## readlengthrange=NULL, Nbins=NULL, method=mean, fixedmatrix=TRUE,
## resizefeatures=TRUE, upstream=20, downstream=20,
## outfile="results/featureCoverage.xls", overwrite=TRUE)
## png("./results/coverage_upstream_downstream.png", height=12, width=24, units="in", res=72)
## plotfeatureCoverage(covMA=fcov, method=mean, scales="fixed", extendylim=2,
## scale_count_val=10^6)
## dev.off()
## },
## step_name = "coverage_upstream_downstream",
## dependency = c("binned_CDS_coverage")
## )
## ----coverage_combined, eval=FALSE, spr=TRUE--------------
## appendStep(sal) <- LineWise(
## code = {
## fcov <- featureCoverage(bfl=BamFileList(outpaths[1:4]), grl=grl[1:4],
## resizereads=NULL, readlengthrange=NULL, Nbins=20, method=mean,
## fixedmatrix=TRUE, resizefeatures=TRUE, upstream=20,
## downstream=20,outfile="results/featureCoverage.xls",
## overwrite=TRUE)
## png("./results/featurePlot.png", height=12, width=24, units="in", res=72)
## plotfeatureCoverage(covMA=fcov, method=mean, scales="fixed", extendylim=2,
## scale_count_val=10^6)
## dev.off()
## },
## step_name = "coverage_combined",
## dependency = c("binned_CDS_coverage", "coverage_upstream_downstream")
## )
## ----coverage_nuc_level, eval=FALSE, spr=TRUE-------------
## appendStep(sal) <- LineWise(
## code = {
## fcov <- featureCoverage(bfl=BamFileList(outpaths[1:2]), grl=grl[1],
## resizereads=NULL, readlengthrange=NULL, Nbins=NULL, method=mean,
## fixedmatrix=FALSE, resizefeatures=TRUE, upstream=20,
## downstream=20, outfile=NULL)
## },
## step_name = "coverage_nuc_level",
## dependency = c("coverage_combined")
## )
## ----read_counting, eval=FALSE, spr=TRUE------------------
## appendStep(sal) <- LineWise(
## code = {
## txdb <- loadDb("./data/tair10.sqlite")
## eByg <- exonsBy(txdb, by=c("gene"))
## bfl <- BamFileList(outpaths, yieldSize=50000, index=character())
## multicoreParam <- MulticoreParam(workers = 8); register(multicoreParam); registered()
## counteByg <- bplapply(bfl, function(x) summarizeOverlaps(eByg, x, mode="Union",
## ignore.strand=TRUE,
## inter.feature=FALSE,
## singleEnd=FALSE,
## BPPARAM = multicoreParam))
## countDFeByg <- sapply(seq(along=counteByg), function(x) assays(counteByg[[x]])$counts)
## rownames(countDFeByg) <- names(rowRanges(counteByg[[1]]))
## colnames(countDFeByg) <- names(bfl)
## rpkmDFeByg <- apply(countDFeByg, 2, function(x) returnRPKM(counts=x, ranges=eByg))
## write.table(countDFeByg, "results/countDFeByg.xls", col.names=NA, quote=FALSE, sep="\t")
## write.table(rpkmDFeByg, "results/rpkmDFeByg.xls", col.names=NA, quote=FALSE, sep="\t")
## ## Creating a SummarizedExperiment object
## colData <- data.frame(row.names=SampleName(sal, "hisat2_mapping"),
## condition=getColumn(sal, "hisat2_mapping", position = "targetsWF", column = "Factor"))
## colData$condition <- factor(colData$condition)
## countDF_se <- SummarizedExperiment::SummarizedExperiment(assays = countDFeByg,
## colData = colData)
## ## Add results as SummarizedExperiment to the workflow object
## SE(sal, "read_counting") <- countDF_se
## },
## step_name = "read_counting",
## dependency = c("featuretypeCounts")
## )
## ----read_counting_view, eval=TRUE------------------------
read.delim(system.file("extdata/countDFeByg.xls", package = "systemPipeR"),
row.names=1, check.names=FALSE)[1:4,1:5]
## ----read_rpkm_view, eval=FALSE---------------------------
## read.delim(system.file("extdata/rpkmDFeByg.xls", package = "systemPipeR"),
## row.names=1, check.names=FALSE)[1:4,1:5]
## ----sample_tree, eval=FALSE, eval=FALSE, spr=TRUE--------
## appendStep(sal) <- LineWise(
## code = {
## ## Extracting SummarizedExperiment object
## se <- SE(sal, "read_counting")
## dds <- DESeqDataSet(se, design = ~ condition)
## d <- cor(assay(rlog(dds)), method="spearman")
## hc <- hclust(dist(1-d))
## png("results/sample_tree.png")
## plot.phylo(as.phylo(hc), type="p", edge.col="blue", edge.width=2, show.node.label=TRUE, no.margin=TRUE)
## dev.off()
## },
## step_name = "sample_tree",
## dependency = "read_counting")
## ----run_edgeR, eval=FALSE, spr=TRUE----------------------
## appendStep(sal) <- LineWise(
## code = {
## countDF <- read.delim("results/countDFeByg.xls", row.names=1, check.names=FALSE)
## cmp <- readComp(stepsWF(sal)[['hisat2_mapping']], format="matrix", delim="-")
## edgeDF <- run_edgeR(countDF=countDF, targets=targetsWF(sal)[['hisat2_mapping']], cmp=cmp[[1]], independent=FALSE, mdsplot="")
## },
## step_name = "run_edgeR",
## dependency = "read_counting")
## ----custom_annot, eval=FALSE, spr=TRUE-------------------
## appendStep(sal) <- LineWise(
## code = {
## m <- useMart("plants_mart", dataset="athaliana_eg_gene", host="https://plants.ensembl.org")
## desc <- getBM(attributes=c("tair_locus", "description"), mart=m)
## desc <- desc[!duplicated(desc[,1]),]
## descv <- as.character(desc[,2]); names(descv) <- as.character(desc[,1])
## edgeDF <- data.frame(edgeDF, Desc=descv[rownames(edgeDF)], check.names=FALSE)
## write.table(edgeDF, "./results/edgeRglm_allcomp.xls", quote=FALSE, sep="\t", col.names = NA)
## },
## step_name = "custom_annot",
## dependency = "run_edgeR")
## ----filter_degs, eval=FALSE, spr=TRUE--------------------
## appendStep(sal) <- LineWise(
## code = {
## edgeDF <- read.delim("results/edgeRglm_allcomp.xls", row.names=1, check.names=FALSE)
## png("results/DEGcounts.png")
## DEG_list <- filterDEGs(degDF=edgeDF, filter=c(Fold=2, FDR=20))
## dev.off()
## write.table(DEG_list$Summary, "./results/DEGcounts.xls", quote=FALSE, sep="\t", row.names=FALSE)
## },
## step_name = "filter_degs",
## dependency = "custom_annot")
## ----venn_diagram, eval=FALSE, spr=TRUE-------------------
## appendStep(sal) <- LineWise(
## code = {
## vennsetup <- overLapper(DEG_list$Up[6:9], type="vennsets")
## vennsetdown <- overLapper(DEG_list$Down[6:9], type="vennsets")
## png("results/vennplot.png")
## vennPlot(list(vennsetup, vennsetdown), mymain="", mysub="", colmode=2, ccol=c("blue", "red"))
## dev.off()
## },
## step_name = "venn_diagram",
## dependency = "filter_degs")
## ----get_go_annot, eval=FALSE, spr=TRUE-------------------
## appendStep(sal) <- LineWise(
## code = {
## # listMarts() # To choose BioMart database
## # listMarts(host="plants.ensembl.org")
## # m <- useMart("plants_mart", host="https://plants.ensembl.org")
## #listDatasets(m)
## m <- useMart("plants_mart", dataset="athaliana_eg_gene", host="https://plants.ensembl.org")
## # listAttributes(m) # Choose data types you want to download
## go <- getBM(attributes=c("go_id", "tair_locus", "namespace_1003"), mart=m)
## go <- go[go[,3]!="",]; go[,3] <- as.character(go[,3])
## go[go[,3]=="molecular_function", 3] <- "F"; go[go[,3]=="biological_process", 3] <- "P"; go[go[,3]=="cellular_component", 3] <- "C"
## go[1:4,]
## if(!dir.exists("./data/GO")) dir.create("./data/GO")
## write.table(go, "data/GO/GOannotationsBiomart_mod.txt", quote=FALSE, row.names=FALSE, col.names=FALSE, sep="\t")
## catdb <- makeCATdb(myfile="data/GO/GOannotationsBiomart_mod.txt", lib=NULL, org="", colno=c(1,2,3), idconv=NULL)
## save(catdb, file="data/GO/catdb.RData")
## },
## step_name = "get_go_annot",
## dependency = "filter_degs")
## ----go_enrich, eval=FALSE, spr=TRUE----------------------
## appendStep(sal) <- LineWise(
## code = {
## load("data/GO/catdb.RData")
## DEG_list <- filterDEGs(degDF=edgeDF, filter=c(Fold=2, FDR=50), plot=FALSE)
## up_down <- DEG_list$UporDown; names(up_down) <- paste(names(up_down), "_up_down", sep="")
## up <- DEG_list$Up; names(up) <- paste(names(up), "_up", sep="")
## down <- DEG_list$Down; names(down) <- paste(names(down), "_down", sep="")
## DEGlist <- c(up_down, up, down)
## DEGlist <- DEGlist[sapply(DEGlist, length) > 0]
## BatchResult <- GOCluster_Report(catdb=catdb, setlist=DEGlist, method="all", id_type="gene", CLSZ=2, cutoff=0.9, gocats=c("MF", "BP", "CC"), recordSpecGO=NULL)
## m <- useMart("plants_mart", dataset="athaliana_eg_gene", host="https://plants.ensembl.org")
## goslimvec <- as.character(getBM(attributes=c("goslim_goa_accession"), mart=m)[,1])
## BatchResultslim <- GOCluster_Report(catdb=catdb, setlist=DEGlist, method="slim", id_type="gene", myslimv=goslimvec, CLSZ=10, cutoff=0.01, gocats=c("MF", "BP", "CC"), recordSpecGO=NULL)
## },
## step_name = "go_enrich",
## dependency = "get_go_annot")
## ----go_plot, eval=FALSE, spr=TRUE------------------------
## appendStep(sal) <- LineWise(
## code = {
## gos <- BatchResultslim[grep("M6-V6_up_down", BatchResultslim$CLID), ]
## gos <- BatchResultslim
## png("results/GOslimbarplotMF.png", height=8, width=10)
## goBarplot(gos, gocat="MF")
## goBarplot(gos, gocat="BP")
## goBarplot(gos, gocat="CC")
## dev.off()
## },
## step_name = "go_plot",
## dependency = "go_enrich")
## ----diff_loading, eval=FALSE, spr=TRUE-------------------
## appendStep(sal) <- LineWise(
## code = {
## countDFeByg <- read.delim("results/countDFeByg.xls", row.names=1, check.names=FALSE)
## coldata <- S4Vectors::DataFrame(assay=factor(rep(c("Ribo","mRNA"), each=4)),
## condition= factor(rep(as.character(targetsWF(sal)[['hisat2_mapping']]$Factor[1:4]), 2)),
## row.names=as.character(targetsWF(sal)[['hisat2_mapping']]$SampleName)[1:8])
## coldata
## },
## step_name = "diff_loading",
## dependency = "go_plot")
## ----diff_translational_eff, eval=FALSE, spr=TRUE---------
## appendStep(sal) <- LineWise(
## code = {
## dds <- DESeq2::DESeqDataSetFromMatrix(countData=as.matrix(countDFeByg[,rownames(coldata)]),
## colData = coldata,
## design = ~ assay + condition + assay:condition)
## # model.matrix(~ assay + condition + assay:condition, coldata) # Corresponding design matrix
## dds <- DESeq2::DESeq(dds, test="LRT", reduced = ~ assay + condition)
## res <- DESeq2::results(dds)
## head(res[order(res$padj),],4)
## write.table(res, file="transleff.xls", quote=FALSE, col.names = NA, sep="\t")
## },
## step_name = "diff_translational_eff",
## dependency = "diff_loading")
## ----heatmap, eval=FALSE, spr=TRUE------------------------
## appendStep(sal) <- LineWise(
## code = {
## geneids <- unique(as.character(unlist(DEG_list[[1]])))
## y <- assay(rlog(dds))[geneids, ]
## y <- y[rowSums(y[])>0,]
## png("results/heatmap1.png")
## pheatmap(y, scale="row", clustering_distance_rows="correlation", clustering_distance_cols="correlation")
## dev.off()
## },
## step_name = "heatmap",
## dependency = "diff_translational_eff")
## ----sessionInfo, eval=FALSE, spr=TRUE--------------------
## appendStep(sal) <- LineWise(
## code = {
## sessionInfo()
## },
## step_name = "sessionInfo",
## dependency = "heatmap")
## ----runWF, eval=FALSE------------------------------------
## sal <- runWF(sal, run_step = "mandatory")
## ----runWF_cluster, eval=FALSE----------------------------
## # wall time in mins, memory in MB
## resources <- list(conffile=".batchtools.conf.R",
## template="batchtools.slurm.tmpl",
## Njobs=18,
## walltime=120,
## ntasks=1,
## ncpus=4,
## memory=1024,
## partition = "short"
## )
## sal <- addResources(sal, c("hisat2_mapping"), resources = resources)
## sal <- runWF(sal, run_step = "mandatory")
## ----plotWF, eval=FALSE-----------------------------------
## plotWF(sal, rstudio = TRUE)
## ----statusWF, eval=FALSE---------------------------------
## sal
## statusWF(sal)
## ----logsWF, eval=FALSE-----------------------------------
## sal <- renderLogs(sal)
## ----list_tools-------------------------------------------
if(file.exists(file.path(".SPRproject", "SYSargsList.yml"))) {
local({
sal <- systemPipeR::SPRproject(resume = TRUE)
systemPipeR::listCmdTools(sal)
systemPipeR::listCmdModules(sal)
})
} else {
cat(crayon::blue$bold("Tools and modules required by this workflow are:\n"))
cat(c("hisat2/2.1.0", "samtools/1.14"), sep = "\n")
}
## ----sessionInfo_final, eval=TRUE-------------------------
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.