R/create_edges_spectra.R

Defines functions create_edges_spectra

Documented in create_edges_spectra

#' @title Create edges spectra
#'
#' @description This function create edges
#'    based on fragmentation spectra similarity
#'
#' @include create_edges.R
#' @include get_params.R
#' @include import_spectra.R
#'
#' @param input Query file containing spectra. Currently an '.mgf' file
#' @param output Output file.
#' @param name_source Name of the source features column
#' @param name_target Name of the target features column
#' @param threshold Minimal similarity to report
#' @param ppm Relative ppm tolerance to be used
#' @param dalton Absolute Dalton tolerance to be used
#' @param qutoff Intensity under which ms2 fragments will be removed.
#'
#' @return The path to the created spectral edges
#'
#' @export
#'
#' @examples
#' \dontrun{
#' tima:::copy_backbone()
#' go_to_cache()
#' get_file(
#'   url = get_default_paths()$urls$examples$spectra_mini,
#'   export = get_params(step = "create_edges_spectra")$files$spectral$raw
#' )
#' create_edges_spectra()
#' unlink("data", recursive = TRUE)
#' }
create_edges_spectra <- function(input = get_params(step = "create_edges_spectra")$files$spectral$raw,
                                 output = get_params(step = "create_edges_spectra")$files$networks$spectral$edges$raw,
                                 name_source = get_params(step = "create_edges_spectra")$names$source,
                                 name_target = get_params(step = "create_edges_spectra")$names$target,
                                 threshold = get_params(step = "create_edges_spectra")$annotations$thresholds$ms2$similarity$edges,
                                 ppm = get_params(step = "create_edges_spectra")$ms$tolerances$mass$ppm$ms2,
                                 dalton = get_params(step = "create_edges_spectra")$ms$tolerances$mass$dalton$ms2,
                                 qutoff = get_params(step = "create_edges_spectra")$ms$thresholds$ms2$intensity) {
  stopifnot("Your input file does not exist." = file.exists(input))
  ## Not checking for ppm and Da limits, everyone is free.

  log_debug("Loading spectra...")
  spectra <- input |>
    import_spectra(
      cutoff = qutoff,
      dalton = dalton,
      ppm = ppm
    )
  if (length(spectra) > 1) {
    log_debug("Performing spectral comparison")
    log_debug("As we do not limit the precursors delta,
      expect a (relatively) long processing time.")
    log_debug("Take yourself a break, you deserve it.")
    nspecz <- length(spectra)
    fragz <- spectra@backend@peaksData

    edges <- create_edges(
      frags = fragz,
      nspecs = nspecz,
      ms2_tolerance = dalton,
      ppm_tolerance = ppm,
      threshold = threshold
    )

    log_debug("Calculating features' entropy")
    entropy <- purrr::map(
      .x = seq_along(1:nspecz),
      .f = function(x, peaks = fragz) {
        return(peaks[[x]] |> msentropy::calculate_spectral_entropy())
      }
    )
    log_debug("Calculating features' number of peaks")
    npeaks <- purrr::map(
      .x = seq_along(1:nspecz),
      .f = function(x, peaks = fragz) {
        return(peaks[[x]] |> length())
      }
    )
    rm(nspecz, fragz)

    edges <- edges |>
      tidytable::select(
        !!as.name(name_source) := "feature_id",
        !!as.name(name_target) := "target_id",
        tidyselect::everything()
      )

    ## ISSUE see #148 find a way to have consistency in spectrum IDs
    idz <- spectra@backend@spectraData$acquisitionNum
    rm(spectra)
    edges <- edges |>
      tidytable::mutate(name_source = idz[name_source], name_target = idz[name_target])
    entropy_df <- tidytable::tidytable(entropy) |>
      tidyfst::rn_col(var = name_source) |>
      tidytable::mutate(
        name_source = idz[name_source],
        feature_spectrum_entropy = as.character(entropy),
        feature_spectrum_peaks = as.character(npeaks)
      ) |>
      tidytable::mutate(!!as.name(name_source) := as.integer(!!as.name(name_source))) |>
      tidytable::distinct(
        !!as.name(name_source),
        feature_spectrum_entropy,
        feature_spectrum_peaks
      )
    rm(entropy, npeaks, idz)

    edges <- edges |>
      tidytable::select(tidyselect::any_of(
        c(
          name_source,
          name_target,
          "candidate_score_similarity" = "score",
          "candidate_count_similarity_peaks_matched"
        )
      ))

    edges <- edges |>
      tidytable::filter(candidate_score_similarity >= threshold)

    edges <- edges |>
      tidytable::full_join(entropy_df) |>
      tidytable::mutate(!!as.name(name_target) := tidytable::coalesce(!!as.name(name_target), !!as.name(name_source)))
    rm(entropy_df)
  } else {
    log_debug("No spectra were found, returning an empty dataframe instead")
    edges <- tidytable::tidytable(
      !!as.name(name_source) := NA,
      "feature_spectrum_entropy" = NA,
      "feature_spectrum_peaks" = NA,
      !!as.name(name_target) := NA,
      "candidate_score_similarity" = NA,
      "candidate_count_similarity_peaks_matched" = NA
    )
  }

  tima:::export_params(
    parameters = get_params(step = "create_edges_spectra"),
    step = "create_edges_spectra"
  )
  tima:::export_output(x = edges, file = output[[1]])
  rm(edges)

  return(output[[1]])
}
taxonomicallyinformedannotation/tima-r documentation built on Jan. 25, 2025, 12:43 p.m.