#' @title Annotate spectra
#'
#' @description This function annotates spectra
#'
#' @details It takes two files as input.
#' A query file that will be matched against a library file.
#'
#' @include get_params.R
#' @include harmonize_adducts.R
#' @include import_spectra.R
#'
#' @param input Query file containing spectra. Currently an '.mgf' file
#' @param library Library containing spectra to match against.
#' Can be '.mgf' or '.sqlite' (Spectra formatted)
#' @param polarity MS polarity. Must be 'pos' or 'neg'.
#' @param output Output file.
#' @param threshold Minimal similarity to report
#' @param ppm Relative ppm tolerance to be used
#' @param dalton Absolute Dalton tolerance to be used
#' @param qutoff Intensity under which ms2 fragments will be removed.
#' @param approx Perform matching without precursor match
#'
#' @return NULL
#'
#' @export
#'
#' @examples
#' \dontrun{
#' tima:::copy_backbone()
#' go_to_cache()
#' get_file(
#' url = get_default_paths()$urls$examples$spectra_mini,
#' export = get_params(step = "annotate_spectra")$files$spectral$raw
#' )
#' get_file(
#' url = get_default_paths()$urls$examples$spectral_lib_mini$with_rt,
#' export = get_default_paths()$data$source$libraries$spectra$exp$with_rt
#' )
#' annotate_spectra(
#' library = get_default_paths()$data$source$libraries$spectra$exp$with_rt
#' )
#' unlink("data", recursive = TRUE)
#' }
annotate_spectra <- function(input = get_params(step = "annotate_spectra")$files$spectral$raw,
library = get_params(step = "annotate_spectra")$files$libraries$spectral,
polarity = get_params(step = "annotate_spectra")$ms$polarity,
output = get_params(step = "annotate_spectra")$files$annotations$raw$spectral$spectral,
threshold = get_params(step = "annotate_spectra")$annotations$thresholds$ms2$similarity$annotation,
ppm = get_params(step = "annotate_spectra")$ms$tolerances$mass$ppm$ms2,
dalton = get_params(step = "annotate_spectra")$ms$tolerances$mass$dalton$ms2,
qutoff = get_params(step = "annotate_spectra")$ms$thresholds$ms2$intensity,
approx = get_params(step = "annotate_spectra")$annotations$ms2approx) {
stopifnot("Your input file does not exist." = file.exists(input))
stopifnot("Polarity must be 'pos' or 'neg'." = polarity %in% c("pos", "neg"))
## Check if library file(s) exists
stopifnot("Library file(s) do(es) not exist" = all(purrr::map(.x = library, .f = file.exists) |>
unlist()))
## Not checking for ppm and Da limits, everyone is free.
if (length(library) > 1) {
library <- library[grepl(polarity, library, fixed = TRUE)]
}
log_debug("Loading spectra...")
spectra <- input |>
import_spectra(
cutoff = qutoff,
dalton = dalton,
polarity = polarity,
ppm = ppm
)
df_empty <- data.frame(
feature_id = NA,
candidate_spectrum_entropy = NA,
candidate_adduct = NA,
candidate_library = NA,
candidate_structure_error_mz = NA,
candidate_structure_name = NA,
candidate_structure_inchikey_no_stereo = NA,
candidate_structure_smiles_no_stereo = NA,
candidate_structure_molecular_formula = NA,
candidate_structure_exact_mass = NA,
candidate_structure_xlogp = NA,
candidate_score_similarity = NA,
candidate_count_similarity_peaks_matched = NA
)
if (length(spectra) > 0) {
log_debug("Loading spectral library")
spectral_library <- unlist(library) |>
purrr::map(
.f = import_spectra,
cutoff = qutoff,
dalton = dalton,
polarity = polarity,
ppm = ppm,
sanitize = FALSE
) |>
purrr::map(
.f = Spectra::applyProcessing,
BPPARAM = BiocParallel::SerialParam()
) |>
Spectra::concatenateSpectra()
query_precursors <- spectra@backend@spectraData$precursorMz
query_spectra <- spectra@backend@peaksData
## ISSUE see #148 find a way to have consistency in spectrum IDs
query_ids <- spectra@backend@spectraData$acquisitionNum
if (is.null(query_ids)) {
query_ids <- spectra@backend@spectraData$spectrum_id
}
if (is.null(query_ids)) {
query_ids <- spectra@backend@spectraData$SLAW_ID
}
if (is.null(query_ids)) {
query_ids <- spectra@backend@spectraData$FEATURE_ID
}
rm(spectra)
## Fix needed
lib_precursors <- spectral_library@backend@spectraData |>
tidytable::transmute(precursor = tidytable::coalesce(tidytable::across(tidytable::any_of(
c("precursorMz", "precursor_mz")
)))) |>
tidytable::pull()
minimal <- pmin(lib_precursors - dalton, lib_precursors * (1 - (10^
-6 * ppm)))
maximal <- pmax(lib_precursors + dalton, lib_precursors * (1 + (10^
-6 * ppm)))
if (approx == FALSE) {
log_debug("Reducing library size...")
df_3 <- dplyr::inner_join(
tidytable::tidytable(minimal, maximal, lib_precursors),
tidytable::tidytable(val = unique(query_precursors)),
by = dplyr::join_by(minimal <= val, maximal >= val)
) |>
tidytable::distinct(minimal, .keep_all = TRUE)
spectral_library <-
spectral_library[lib_precursors %in% df_3$lib_precursors]
## Fix needed
lib_precursors <- spectral_library@backend@spectraData |>
tidytable::transmute(precursor = tidytable::coalesce(tidytable::across(tidytable::any_of(
c("precursorMz", "precursor_mz")
)))) |>
tidytable::pull()
minimal <- pmin(lib_precursors - dalton, lib_precursors * (1 - (10^
-6 * ppm)))
maximal <- pmax(lib_precursors + dalton, lib_precursors * (1 + (10^
-6 * ppm)))
rm(df_3)
}
lib_ids <- seq_along(spectral_library)
spectral_library$spectrum_id <- lib_ids
lib_spectra <- spectral_library@backend@peaksData
safety <- lib_spectra[purrr::map(.x = lib_spectra, .f = length) != 0]
if (length(safety) != 0) {
log_debug("Annotating...")
df_final <-
calculate_entropy_score(
lib_ids = lib_ids,
lib_precursors = lib_precursors,
lib_spectra = lib_spectra,
query_ids = query_ids,
query_precursors = query_precursors,
query_spectra = query_spectra,
dalton = dalton,
ppm = ppm,
threshold = threshold,
approx = approx
) |>
tidytable::as_tidytable()
lib_adduct <- spectral_library@backend@spectraData$adduct
if (is.null(lib_adduct)) {
lib_adduct <- rep(NA_character_, length(spectral_library))
}
lib_inchikey <- spectral_library@backend@spectraData$inchikey
if (is.null(lib_inchikey)) {
lib_inchikey <- rep(NA_character_, length(spectral_library))
}
lib_inchikey2D <-
spectral_library@backend@spectraData$inchikey_2D
if (is.null(lib_inchikey2D)) {
lib_inchikey2D <- rep(NA_character_, length(spectral_library))
}
lib_smiles <- spectral_library@backend@spectraData$smiles
if (is.null(lib_smiles)) {
lib_smiles <- rep(NA_character_, length(spectral_library))
}
lib_smiles2D <- spectral_library@backend@spectraData$smiles_2D
if (is.null(lib_smiles2D)) {
lib_smiles2D <- rep(NA_character_, length(spectral_library))
}
lib_library <- spectral_library@backend@spectraData$library
if (is.null(lib_library)) {
lib_library <- rep(NA_character_, length(spectral_library))
}
lib_mf <- spectral_library@backend@spectraData$formula
if (is.null(lib_mf)) {
lib_mf <- rep(NA_character_, length(spectral_library))
}
lib_mass <- spectral_library@backend@spectraData$exactmass
if (is.null(lib_mass)) {
lib_mass <- rep(NA_real_, length(spectral_library))
}
lib_name <- spectral_library@backend@spectraData$name
if (is.null(lib_name)) {
lib_name <- rep(NA_character_, length(spectral_library))
}
lib_xlogp <- spectral_library@backend@spectraData$xlogp
if (is.null(lib_xlogp)) {
lib_xlogp <- rep(NA_real_, length(spectral_library))
}
rm(spectral_library)
df_meta <- tidytable::tidytable(
"target_id" = lib_ids,
"target_adduct" = lib_adduct,
"target_inchikey" = lib_inchikey,
"target_inchikey_no_stereo" = lib_inchikey2D,
"target_smiles" = lib_smiles,
"target_smiles_no_stereo" = lib_smiles2D,
"target_library" = lib_library,
"target_formula" = lib_mf,
"target_exactmass" = lib_mass,
"target_name" = lib_name,
"target_xlogp" = lib_xlogp,
"target_precursorMz" = lib_precursors
)
df_meta <- df_meta |>
tima:::harmonize_adducts(adducts_colname = "target_adduct")
rm(lib_precursors)
df_final$candidate_spectrum_entropy <- as.numeric(df_final$candidate_spectrum_entropy)
df_final$candidate_score_similarity <- as.numeric(df_final$candidate_score_similarity)
df_final$candidate_count_similarity_peaks_matched <- as.integer(df_final$candidate_count_similarity_peaks_matched)
df_final <- df_final |>
tidytable::left_join(df_meta) |>
tidytable::select(-target_id)
df_final <- df_final |>
tidytable::mutate(
candidate_structure_error_mz = target_precursorMz - precursorMz,
candidate_structure_inchikey_no_stereo = tidytable::if_else(
condition = is.na(target_inchikey_no_stereo),
true = target_inchikey |>
gsub(
pattern = "-.*",
replacement = "",
perl = TRUE
),
false = target_inchikey_no_stereo
),
candidate_structure_smiles_no_stereo = tidytable::coalesce(target_smiles_no_stereo, target_smiles)
) |>
tidytable::select(tidyselect::any_of(
c(
"feature_id",
"candidate_adduct" = "target_adduct",
"candidate_library" = "target_library",
"candidate_structure_error_mz",
"candidate_structure_name" = "target_name",
"candidate_structure_inchikey_no_stereo",
"candidate_structure_smiles_no_stereo",
"candidate_structure_molecular_formula" = "target_formula",
"candidate_structure_exact_mass" = "target_exactmass",
"candidate_structure_xlogp" = "target_xlogp",
"candidate_spectrum_entropy",
"candidate_score_similarity",
"candidate_count_similarity_peaks_matched"
)
))
## COMMENT AR: Not doing it because of thresholding
## df_final[is.na(df_final)] <- 0
log_debug("Filtering results above threshold only...")
df_final <- df_final |>
tidytable::filter(candidate_score_similarity >= threshold) |>
tidytable::arrange(tidytable::desc(candidate_score_similarity)) |>
## keep only the best result (per library for now)
tidytable::distinct(
feature_id,
candidate_library,
candidate_structure_inchikey_no_stereo,
.keep_all = TRUE
)
log_debug(
nrow(
df_final |>
## else doesn't work if some are empty
tidytable::distinct(
candidate_structure_inchikey_no_stereo,
candidate_structure_smiles_no_stereo
)
),
"Candidates were annotated on",
nrow(df_final |>
tidytable::distinct(feature_id)),
"features, with at least",
threshold,
"similarity score."
)
if (nrow(df_final) == 0) {
log_debug("No spectra were matched, returning an empty dataframe")
df_final <- df_empty
}
} else {
log_debug("No spectra left in the library,
returning an empty dataframe")
df_final <- df_empty
}
rm(
query_precursors,
query_spectra,
query_ids,
minimal,
maximal
)
} else {
log_debug("No spectra matched the given polarity,
returning an empty dataframe")
df_final <- df_empty
}
tima:::export_params(
parameters = get_params(step = "annotate_spectra"),
step = "annotate_spectra"
)
tima:::export_output(x = df_final, file = output[[1]])
rm(df_final)
return(output[[1]])
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.