R/spsNewtab.R

Defines functions removeSpsTab

Documented in removeSpsTab

############################ SPS New Tab Functions ############################

# #' Create a new SPS tab
# #' @description Functions to create a new SPS tab. It is recommended to create
# #' the data tab first then its linked plot tabs.
# #' @param tab_id character string, length 1, must start with "*plot_*" for plot
# #' tabs and "*data_*" for data tabs. Must be a unique value. use
# #' [spsTabInfo(app_path = "YOUR_APP_PATH")][spsTabInfo()] to see current tab
# #' IDs.
# #' @param tab_displayname character string, length 1, the name to be displayed
# #' on side navigation bar list and tab title
# #' @param desc character string, length 1 in markdown format. Tab description
# #' and instructions. You can make type it in multiple lines but in only one
# #' string (one pair of quotes). e.g.
# #' ```
# #' "
# #' # some desc
# #' ## second line,
# #' - bullet 1
# #' - bullet 2
# #' "
# #' ```
# #' @param img realtive path, ideally a plot screenshot of users expect
# #' to see when they make the plot. It can be a internet link or a local
# #' link which uses the *www* folder asthe root.
# #' e.g. drop your image *plot.png* inside *www/plot_list*, then the
# #' link here is "plot_list/plot.png". Only needed for plot tabs.
# #' @param plot_control_ui  additional UI components you want to
# #' add to control plotting options, like additional slider bar, some on/off
# #' switches, text input etc. If more than one components, put them in a
# #' [shiny::tagList]
# #' @param plot_expr the plot expression, like all other expression in other
# #' shiny reactive expressions. e.g for more than one line use *{}*. Only to be
# #' used for plot tabs. default is
# #' ```
# #' plotly::ggplotly(
# #'     ggplot2::ggplot(mydata$data,
# #'            ggplot2::aes_string(names(mydata$data)[1],
# #'                       names(mydata$data)[2])
# #'     ) +
# #'     ggplot2::geom_point(aes(
# #'             color = seq_len(nrow(mydata$data))
# #'     ))
# #' )
# #' ```
# #'
# #' @param pkgs which packages you require users to install, list. specify
# #' CRAN, bioconductor or github packages in a vector. see
# #' [shinyCheckPkg]
# #' ```
# #' list(
# #'     cran_pkg = c("base"),
# #'     bioc_pkg = c(""),
# #'     github = c("")
# #' )
# #' ```
# #' @param plot_data a list of *makePlotData()* results, see [makePlotData] for
# #' details.
# #' ```
# #' list(
# #'     makePlotData("plot_1", ...),
# #'     makePlotData("plot_2", ...),
# #'     ...
# #' )
# #' ```
# #' @param plot_out_func the plot output function to use on UI,
# #' like [shiny::plotOutput], just the function name without quotes
# #' and without *()*. default is [plotly::plotlyOutput].
# #' @param plot_render_func The render plot function to use on server. No quotes,
# #' no *()*. Must be **paired** with *plot_out_func*. e.g
# #' If [plotly::plotlyOutput] is used on UI, server must use
# #' [plotly::renderPlotly]. If you use [shiny::renderPlot],
# #' plot will not show up.
# #' @param app_path string, app directory, default is current directory
# #' @param out_folder_path string, which directory to write the new tab file,
# #' default is the *R* folder in the SPS project
# #' @param plugin character string, if you are building a tab for a plugin, you
# #' can specify the plugin name here.
# #' @param author character string, or a vector of strings. authors of the tab
# #' @param empty bool, for **advanced developers**, if you don't want to
# #' use SPS default tab UI and server structure, you can use turn this to *TRUE*.
# #' A very simple template will be generated and you need to write all UI and
# #' server parts by yourself. In this case, only `tab_id`, `display_name`,
# #' `author` are needed, other
# #' tab args can be ignored, system args are still working, like `verbose`,
# #' `preview`, `style`, `colorful`
# #' @param preview bool, *TRUE* will print the new tab code to console and will
# #' not write the file and will not register the tab
# #' @param use_string bool, sometimes parsing an expression in R may not be
# #' totally accurate. To aviod this problem, turn this to *TRUE* and for
# #' *plot_control_ui*, *plot_expr*, *p_out_func*, *p_render_func*, wrap your
# #' expression in a quoted string. What you have provided in the string will be
# #' what on the new tab file, no expression parsing will happen. Can only be
# #' controlled as a group, which means use string for all of them or none of
# #' them in plot tabs. For data tab, the affected argument is *common_validation*
# #' . When turn this to *TRUE*, be careful with quotes in your expression,
# #' escape or use alternative of single/double quotes.
# #' ```
# #' newTabPlot(
# #'     ...
# #'     use_string = TRUE,
# #'     plot_control_ui = "
# #'     tagList(clearableTextInput('id1', 'label')), h5('this title')
# #'     ",
# #'     plot_expr = "
# #'     plotly::ggplotly(
# #'         ggplot2::ggplot(mydata$data,
# #'                ggplot2::aes_string(names(mydata$data)[1],
# #'                           names(mydata$data)[2])) +
# #'             ggplot2::geom_point(aes(
# #'                 color = seq_len(nrow(mydata$data))
# #'             ))
# #'     )
# #'     ",
# #'     p_out_func = "plotly::plotlyOutput"
# #'     ...
# #' )
# #' ```
# #' @param reformat bool, whether to use [styler::style_file] reformat the code
# #' @param open_file bool, if Rstudio is detected, open the new tab file?
# #' @param verbose bool, default follows the project verbosity level.
# #'  *TRUE* will give you more information on progress and debugging
# #' @param colorful bool, whether the message will be colorful or not
# #' @details
# #' - Must use this function inside a SPS project, use [spsInit()] if
# #' there is no project.
# #' - For a new data tab, different preprocessing methods, their
# #'  pre-prequirements and what plotting options available after each
# #'  preprocess is controlled by the [makePrepro()] function. Each call from
# #'  [makePrepro] function specify one preprocessing method.
# #'  All preprocess methods should be provided in a list
# #'  and passed to the *prepro_methods* argument.
# #' - A new plot tab can have more than one data set as the input. For example a
# #' plot can require a metadata table and a log transformed table as inputs.
# #' There can also be multiple data tabs can preprocess and produce the same log table.
# #' So you need to specify how many data inputs this plot requires; for each
# #' input which data tab(s) this plot tab can receive data from; for each input
# #' data type, what validations (data format checks) you want to do. All of these
# #' are controlled by [makePlotData] and return(s) of this function should be
# #' provided in a list to the *plot_data* argument.
# #' - Different reprocess methods in a data tab
# #'  is controlled by the [makePrepro] function. Each call from
# #'  this function specify one preprocessing method. All preprocess methods
# #'  should be provided in a list to the *prepro_methods* argument.
# #' - One of the steps in creating a plot tab is to specify incoming data source.
# #' This is controlled by `receive_datatab_ids` argument in [makePlotData()].
# #' It requires the data tab IDs exist in the
# #' config file *config/tabs.csv*. So, it is best to create all required data
# #' tabs first. Or specify it to any existing data tab like 'data_example' and
# #' when the template is created, manually change it.
# #' @return a tab file in R folder and tab info registered on config/tabs.csv
# #' @export
# #' @importFrom rlang enquo
# #' @examples
# #' spsInit(change_wd = FALSE, overwrite = TRUE)
# #' newTabData(
# #'     tab_id = "data_new",
# #'     tab_displayname = "my first data tab",
# #'     prepro_methods = list(makePrepro(label = "do nothing",
# #'                                      plot_options = "plot_new")),
# #'     app_path = glue::glue("SPS_{format(Sys.time(), '%Y%m%d')}")
# #' )
# #' newTabPlot(
# #'     tab_id = "plot_new1",
# #'     tab_displayname = "my first plot tab",
# #'     plot_data = list(
# #'         makePlotData(dataset_label = "Data from my new tab",
# #'                      receive_datatab_ids = "data_new",
# #'                      app_path = glue::glue("SPS_{format(Sys.time(), '%Y%m%d')}"))
# #'     ),
# #'     app_path = glue::glue("SPS_{format(Sys.time(), '%Y%m%d')}")
# #' )
# #' newTabData(
# #'     tab_id = "data_empty",
# #'     tab_displayname = "my first empty data tab",
# #'     empty = TRUE,
# #'     app_path = glue::glue("SPS_{format(Sys.time(), '%Y%m%d')}")
# #' )
# #' newTabPlot(
# #'     tab_id = "plot_empty",
# #'     tab_displayname = "my first empty plot tab",
# #'     empty = TRUE,
# #'     app_path = glue::glue("SPS_{format(Sys.time(), '%Y%m%d')}")
# #' )
# newTabPlot <- function(tab_id = "plot_id1",
#                        tab_displayname = "Plot Tab Title",
#                        desc = "default",
#                        img = "",
#                        plot_expr = plotly::ggplotly(
#                            ggplot2::ggplot(
#                                mydata$data,
#                                ggplot2::aes_string(names(mydata$data)[1], names(mydata$data)[2])) +
#                                ggplot2::geom_point(ggplot2::aes(
#                                    color = seq_len(nrow(mydata$data))
#                                ))
#                        ),
#                        pkgs = list(
#                            cran_pkg = c("base"),
#                            bioc_pkg = c(""),
#                            github = c("")
#                        ),
#                        plot_data = list(makePlotData(app_path = app_path)),
#                        plot_out_func = plotly::plotlyOutput,
#                        plot_render_func = plotly::renderPlotly,
#                        app_path = getwd(),
#                        out_folder_path = file.path(app_path, "R"),
#                        plot_control_ui = tagList(h3("Some plotting options")),
#                        author = "",
#                        plugin = "",
#                        empty = FALSE,
#                        preview = FALSE,
#                        use_string = FALSE,
#                        reformat = TRUE,
#                        open_file = TRUE,
#                        verbose = spsOption("verbose"),
#                        colorful = spsOption("use_crayon")){
#     msg("This function is suspended in version >= 1.1, use 'spsNewTab' instead.", "NOTICE", "orange")
#     verbose_old <- spsOption('verbose')
#     colorful_old <- spsOption('use_crayon')
#     spsOption('verbose', verbose)
#     spsOption('use_crayon', colorful)
#     spsinfo("Asserting tab ID")
#     spsinfo(glue("Asserting info for tab {tab_id}"))
#     out_p <- file.path(out_folder_path, glue("tab_vs_{tab_id}.R"))
#     .newtabAsserts(tab_id = tab_id, tab_displayname = tab_displayname,
#                    desc = desc, author = author,
#                    out_folder_path = out_folder_path,
#                    out_p = out_p, app_path = app_path,
#                    plot_data = plot_data,
#                    reformat = reformat, open_file = open_file,
#                    type_sub = "plot", preview = preview, img = img)
#     spsinfo("Creates descrption")
#     if(desc == "default") desc <- "
#     #### Some Description of this data in markdown
#     - you should ...
#         1. eg 1.
#         2. eg 2.
#         - **Notice**: ...`this` ...
#
#
#     ```
#     some code demo ...
#     ```
#     "
#     spsinfo("Parsing plot `data` methods")
#     pt_data <- .collectPlotData(plot_data)
#     pg_title <-  pt_data[['pg_title']]
#     pg_id <-  pt_data[['pg_id']]
#     hreftab <-  pt_data[['hreftab']]
#     select_input <- pt_data[['select_input']]
#     getdata <- pt_data[['getdata']]
#     vd <- pt_data[['vd']]
#     spsinfo("Parsing plot expression")
#     plot_expr <- .expr2string(rlang::enquo(plot_expr), use_string)
#     spsinfo("Parsing plot output and render function")
#     p_out_func <- .expr2string(rlang::enquo(plot_out_func), use_string)
#     p_render_func <- .expr2string(rlang::enquo(plot_render_func), use_string)
#     spsinfo("Parsing plot UI control HTML")
#     control_ui <- .expr2string(rlang::enquo(plot_control_ui), use_string)
#     spsinfo("Parsing package requirements")
#     pkgs <- .resolveTabPkg(pkgs)
#     spsinfo("Parsing author(s)")
#     author <- glue_collapse(author, sep = ", ")
#     spsinfo("Ensure all template replacements are length 1 strings")
#     list(tab_id, tab_displayname, desc,
#          pg_id, pg_title, select_input,
#          getdata, vd, plot_expr,
#          p_out_func, p_render_func, author,
#          pkgs, hreftab, control_ui) %>%
#         {
#             check_names <- c("tab Id", "display name", "description",
#                              "progress data ID", "progress data title",
#                              "data input selection", "get data expr",
#                              "data validation expr", "plot expression",
#                              "plot output func", "plot render func",
#                              "author", "Package requirements",
#                              "data href tab", "plot control UI")
#             mapply(function(x, name){
#                 if(length(x) != 1){
#                     spserror(glue("Injection {name} is not a length 1 string:
#                               {glue_collapse(x, '\n---\n')}"))
#                 }
#             }, x = ., name = check_names)
#         }
#     spsinfo("Start to inject to template...")
#     crt_date <- Sys.time()
#     tmp_file <- if(!empty)"plot_tab_template.R" else "plot_tab_template_empty.R"
#     tmp <- readLines(
#         system.file(file.path("app", "templates", tmp_file),
#                     package = "systemPipeShiny")
#     ) %>%
#         glue_collapse(sep = '\n') %>%
#         glue(.open = "#@", .close = "@#")
#     if(preview) return(cat(tmp))
#     spsinfo(glue("Write to file {out_p}"), TRUE)
#     writeLines(tmp, out_p)
#     # reformat
#     .reformatTab(reformat, out_p)
#     # register tab
#     .registerTabWrapper(type_sub = "plot", img, tab_id, tab_displayname,
#                         app_path, out_p, open_file, plugin = plugin)
#     # reset verbose to whatever before the function runs
#     spsOption('verbose', verbose_old)
#     msg("New tab created!", "SPS-SUCCESS", "green")
#     spsOption('use_crayon', colorful_old)
#     return(invisible())
# }
#
#
# #' @rdname newTabPlot
# #' @param common_validation expression, use '\{\}' to wrap around multiple line
# #' expressions. Usually a [spsValidate] object. You can use shiny's built in
# #' [shiny::req] or [shiny::validate] for a simpler version.
# #' @param prepro_methods a list of [makePrepro] method returns, read help for
# #' that function for details
# #' @param eg_path example data set path. Each data tab requires an example data
# #' set to be displayed when users don't have anything to upload. Usually this
# #' data file is a tabular file and stored in the *data* folder in a SPS
# #' project
# #' @export
# #' @importFrom rlang enquo
# newTabData <- function(tab_id = "data_id1",
#                        tab_displayname = "Data Tab Title",
#                        desc = "default",
#                        pkgs = list(
#                            cran_pkg = c("base"),
#                            bioc_pkg = c(""),
#                            github = c("")
#                        ),
#                        common_validation = spsValidate({"pass"}, "common"),
#                        prepro_methods = list(
#                            makePrepro("nothing", "do nothing"),
#                            makePrepro("md1", "method1",
#                                       vd_expr = {nrow(data_filtered) > 1})
#                        ),
#                        app_path = getwd(),
#                        out_folder_path = file.path(app_path, "R"),
#                        eg_path = file.path(app_path, "data", "iris.csv"),
#                        plugin = "",
#                        author = "",
#                        empty = FALSE,
#                        preview = FALSE,
#                        reformat = TRUE,
#                        open_file = TRUE,
#                        use_string = FALSE,
#                        verbose = spsOption("verbose"),
#                        colorful = spsOption("use_crayon")){
#     msg("This function is suspended in version >= 1.1, use 'spsNewTab' instead.", "NOTICE", "orange")
#     verbose_old <- spsOption('verbose')
#     colorful_old <- spsOption('use_crayon')
#     spsOption('verbose', verbose)
#     spsOption('use_crayon', colorful)
#     spsinfo("Asserting tab ID")
#     spsinfo(glue("Asserting info for tab {tab_id}"))
#     out_p <- file.path(out_folder_path, glue("tab_vs_{tab_id}.R"))
#     .newtabAsserts(tab_id = tab_id, tab_displayname = tab_displayname,
#                    desc = desc, author = author,
#                    out_folder_path = out_folder_path,
#                    out_p = out_p, app_path = app_path,
#                    prepro_methods = prepro_methods,
#                    reformat = reformat, open_file = open_file,
#                    type_sub = "data", preview = preview)
#     spsinfo("Creates descrption")
#     if(desc == "default") desc <- "
#     #### Some Description of this data in markdown
#     - you should ...
#         1. eg 1.
#         2. eg 2.
#         - **Notice**: ...`this` ...
#
#
#     ```
#     some code demo ...
#     ```
#     "
#     spsinfo("Parsing common validation")
#     common_validation <- .expr2string(rlang::enquo(common_validation), use_string)
#     spsinfo("Parsing preprocess methods")
#     prepro <- .collectPrepro(prepro_methods)
#     choices <-  prepro[['choices']]
#     vds <- prepro[['vds']]
#     pre <- prepro[['pres']]
#     pt_options <- prepro[['pt_opts']]
#     spsinfo("Parsing package requirements")
#     pkgs <- .resolveTabPkg(pkgs)
#     spsinfo("Parsing author(s)")
#     author <- glue_collapse(author, sep = ", ")
#     eg_path = eg_path = normalizePath(eg_path, winslash = "/")
#     spsinfo("Ensure all template replacements are length 1 strings")
#     list(tab_id, tab_displayname, desc, common_validation,
#          choices, vds, pre, author, eg_path, pkgs) %>%
#         {check_names <- c("tab Id", "display name", "description",
#                           "common validation expressions",
#                           "preprocess choices", "preprocess validation",
#                           "preprocess method", "author", "example file",
#                           "Package requirements")
#         mapply(function(x, name){
#             if(length(x) != 1){
#                 spserror(glue("Injection {x} is not a length 1 string"))
#             }
#         }, x = ., name = check_names)
#         }
#     spsinfo("Start to inject to template...")
#     crt_date <- Sys.time()
#     tmp_file <- if(!empty)"data_tab_template.R" else "data_tab_template_empty.R"
#     tmp <- readLines(
#         system.file(file.path("app", "templates", tmp_file),
#                     package = "systemPipeShiny")
#     ) %>%
#         glue_collapse(sep = '\n') %>%
#         glue(.open = "#@", .close = "@#")
#     if(preview) return(cat(tmp))
#     spsinfo(glue("Write to file {out_p}"), TRUE)
#     writeLines(tmp, out_p)
#     # reformat
#     .reformatTab(reformat, out_p)
#     # register tab
#     .registerTabWrapper(type_sub = "data", img = "", tab_id, tab_displayname,
#                         app_path, out_p, open_file, plugin = plugin)
#     # reset verbose to whatever before the function runs
#     # reset verbose to whatever before the function runs
#     spsOption('verbose', verbose_old)
#     msg("New tab created!", "SPS-SUCCESS", "green")
#     spsOption('use_crayon', colorful_old)
#     return(invisible())
# }
#
#
# #' Create data receiving methods for plot tabs
# #' @description This function specify for each input data type in a plot tab,
# #' 1. where the data is coming from, 2. how to validate incoming data.
# #' To use this function, make sure there is a SPS project and
# #' *config/tabs.csv* exists.
# #' @param dataset_id string, length 1, a unique ID within this plot
# #'  tab.
# #' @param dataset_label string, length 1, what label to display on UI for this
# #' type of input data
# #' @param receive_datatab_ids a vector of tab IDs: for this kind of data input,
# #' which data tabs that can be used as input source(s). For example, if this
# #' plot tab requires a dataframe and can be produced from "data_df1" or
# #' "data_df2", *receive_datatab_ids = c("data_df1", "data_df2")*. These options
# #' are later rendered as a drop down menu for users to choose where
# #' they have prepared the required data from.
# #' @param app_path path, SPS project folder
# #' @param vd_expr what expression to validate(check) the incoming data set.
# #' Usually it is a [spsValidate] object
# #' @param use_string bool, if you don't want to parse *vd_expr*, use quoted
# #' string for *vd_expr* and turn this to TRUE. See the same argument in
# #' [newTabPlot]
# #'
# #' @return a special list that stores one type of data input info
# #' @export
# #' @details For the validation expression, the incoming data is stored in a
# #' reactive values object, and you can access this data object
# #' by *mydata$dataset_id*,
# #' e.g. the dataset_id is "raw_data", then when the time you validate this
# #' type of incoming data set, a variable *mydata$raw_data* is accessible. So you
# #' can directly use `mydata$raw_data` in *vd_expr*.
# #'
# #' It is recommended to create data tabs first before running this function,
# #' because *receive_datatab_ids* required data tab id exists in the *tabs.csv*
# #' file.
# #' @seealso [newTabPlot]
# #' @importFrom rlang enquo
# #' @examples
# #' spsInit(change_wd = FALSE, overwrite = TRUE, project_name = "SPS_plotdata")
# #' newTabData("data_df1", "df 1",
# #'            app_path = "SPS_plotdata",
# #'            open_file = FALSE)
# #' newTabData("data_df2", "df 2",
# #'            app_path = "SPS_plotdata",
# #'            open_file = FALSE)
# #' plotdata_raw <- makePlotData("raw", "raw data",
# #'              receive_datatab_ids = "data_df1",
# #'              vd_expr = spsValidate({
# #'                  if(!is.data.frame(mydata$raw))
# #'                      stop("Input raw data need to be a dataframe")
# #'              }, vd_name = "Validate raw data"),
# #'              app_path = "SPS_plotdata")
# #' plotdata_meta <- makePlotData("meta", "meta data",
# #'              receive_datatab_ids = c("data_df1", "data_df2"),
# #'              vd_expr = spsValidate({
# #'                  if(!is.data.frame(mydata$meta))
# #'                      stop("Input raw data need to be a dataframe")
# #'                  if(nrow(mydata$meta) < 1)
# #'                      stop("Input raw data need to have at least one row")
# #'              }, vd_name = "Validate meta data"),
# #'              app_path = "SPS_plotdata")
# #' newTabPlot("plot_test1",
# #'            app_path = "SPS_plotdata",
# #'            plot_data = list(plotdata_raw, plotdata_meta))
# makePlotData <- function(dataset_id = "data",
#                          dataset_label = "Raw data",
#                          receive_datatab_ids = "data_example",
#                          vd_expr = spsValidate({
#                              if(is.data.frame(mydata$data)) TRUE
#                              else stop("Data xx needs to be a dataframe or tibble")
#                          }),
#                          app_path = getwd(),
#                          use_string = FALSE){
#     msg("This function is suspended in version >= 1.1, use 'spsNewTab' instead.", "NOTICE", "orange")
#     stopifnot(is.character(dataset_id) & length(dataset_id) == 1)
#     stopifnot(is.character(dataset_label) & length(dataset_label) == 1)
#     stopifnot(is.character(receive_datatab_ids))
#     spsinfo(glue("Creates plot data method for {dataset_id}"))
#     rec_tab_labels <- lapply(
#         receive_datatab_ids,
#         function(x){
#             label <- findTabInfo(
#                 x, force_reload = TRUE,
#                 tab_file =
#                     file.path(app_path, "config", "tabs.csv"))[['tab_labels']]
#             if(nchar(label) == 0){
#                 as.character(x)
#             } else label
#         }
#     ) %>% unlist()
#     vd_expr_parsed <- .expr2string(rlang::enquo(vd_expr), use_string)
#     structure(
#         list(id = dataset_id,
#              dataset_label = dataset_label,
#              receive_datatab_ids = receive_datatab_ids,
#              rec_tab_labels = rec_tab_labels,
#              vd = vd_expr_parsed
#         ),
#         class = c("sps-plotdata")
#     )
# }
#
#
# #' Create data tab preprocess methods
# #' @description On a data tab, given the same uploaded data set,
# #' users can choose different ways to preprocess the data and therefore
# #' different preprocessing methods will lead to different plot tab options.
# #' Every call of this function defines a preprocess method: 1. data
# #' validation expression before preprocess; 2. actual preprocess expression; 3.
# #' plot options after preprocess.
# #' @param method_id string, length 1, a unique ID within this data tab.
# #' @param label string, length 1, what label to display on UI for users to
# #' choose as a preprocess option
# #' @param vd_expr expression, usually a [spsValidate] object. Before preprocess
# #' if there is any additional validation that is special to this preprocess
# #' method, you can specify here
# #' @param pre_expr The actual preprocess expression. You should use
# #' a pre-created variable called *data_filtered* to start and this is the
# #' object that contains filtered data after users filtering on the UI. In the
# #' end of this expression, you should return a preprocessed dataframe or
# #' whatever object type that can be accepted by the desired plot tab. It is
# #' recommended to write the preprocess method into a function and directly call
# #' the function here, e.g.
# #' ```
# #' myPreprocess <- function(data){
# #'     if(is.numeric(data[ ,1]))
# #'         data[ ,1] <- data[ ,1] + 1
# #'     return(data)
# #' }
# #' makePrepro(
# #'  ...,
# #'  pre_expr = myPreprocess(data_filtered),
# #'  ...
# #' )
# #' ```
# #' @param plot_options plot tab IDs: if data is preprocessed by this method,
# #' what kind of plots it can make, specify plot tab IDs in a vector. Note:
# #' unlike the *receive_datatab_ids* argument in [makePlotData] that requires
# #' the *config/tabs.csv* exists, this argument doesn't require the config file
# #' or the plot tab to be existing. You can use any ID(s) here. The ID checking
# #' is postponed when the [genGallery] function runs on app start. "default"
# #' means all possible plot tabs, the same as *type = 'plot'* in [genGallery].
# #' @param use_string same as the argument in [newTabPlot], controls
# #' *vd_expr* and *pre_expr* in this function
# #' @return a special list that contains all info for a preprocess method
# #' @export
# #' @details for *vd_expr*, *pre_expr* a variable called *data_filtered* is
# #' accessible and is the object where data stored. One should use this
# #' object to do validation or preprocess. See examples.
# #' @importFrom rlang enquo
# #' @examples
# #' spsInit(change_wd = FALSE, overwrite = TRUE, project_name = "SPS_prepro")
# #' # first preprocess method
# #' prepro_log <- makePrepro(
# #'     "log", "take log of first column",
# #'     vd_expr = spsValidate({
# #'         if(!is.data.frame(data_filtered))
# #'             stop("Input input data need to be a dataframe")
# #'     }, vd_name = "log method pre-checks"),
# #'     pre_expr = {
# #'         if(is.numeric(data_filtered[ ,1]))
# #'             {if(all(data_filtered[ ,1] > 0)){
# #'                 data_filtered[ ,1] <- log(data_filtered[ ,1])}
# #'             }
# #'         data_filtered
# #'     },
# #'     plot_options = c("plot_xx1", "plot_xx2")
# #'     )
# #' ## remember to save these helper functions in a R scripts under the R
# #' ## folder. They will be automatically sourced when app starts.
# #' myPreprocess <- function(data){
# #'     if(is.numeric(data[ ,1]))
# #'         data[ ,1] <- data[ ,1] + 1
# #'     return(data)
# #' }
# #' myVd <- function(data, vd_name){
# #'     spsValidate({
# #'         if(!is.data.frame(data))
# #'             stop("Input input data need to be a dataframe")
# #'     }, vd_name = vd_name)
# #' }
# #' # second preprocess method
# #' prepro_addone <- makePrepro(
# #'     "addone", "add one to first column",
# #'     vd_expr = myVd(data_filtered, "add one method pre-checks"),
# #'     pre_expr = myPreprocess(data_filtered),
# #'     plot_options = c("plot_xx1")
# #' )
# #' # Combine two methods and make a new data tab
# #' newTabData("data_test1",  "test 1",
# #'            app_path = "SPS_prepro",
# #'            prepro_methods = list(prepro_log, prepro_addone)
# #'            )
# makePrepro <- function(method_id = "md1",
#                        label = "New method1",
#                        vd_expr = spsValidate(is.data.frame(data_filtered)),
#                        pre_expr ={data_filtered},
#                        plot_options = "default",
#                        use_string = FALSE){
#     msg("This function is suspended in version >= 1.1, use 'spsNewTab' instead.", "NOTICE", "orange")
#     stopifnot(is.character(method_id))
#     stopifnot(is.character(label))
#     stopifnot(is.character(plot_options))
#     spsinfo(glue("Creates preprocess method for {method_id}"))
#     vd_expr_parsed <- .expr2string(rlang::enquo(vd_expr), use_string)
#     pre_expr_parsed <- .expr2string(rlang::enquo(pre_expr), use_string)
#     if(plot_options[1] == 'default'){
#         p_option <- ("type = 'plot'")
#     } else if(length(plot_options) == 1){
#         p_option <- glue("c('{plot_options}')")
#     } else if(length(plot_options) > 1){
#         p_option <- glue_collapse(plot_options, sep = "', '") %>%
#             {glue("c('{.}')")}
#     } else if(!emptyIsFalse(plot_options)) {
#         spserror("plot_options can't be empty")
#     }
#     structure(
#         list(id = method_id,
#              label = label,
#              vd = vd_expr_parsed,
#              pre = pre_expr_parsed,
#              pt_opts = p_option
#         ),
#         class = c("sps-prepro")
#     )
# }

#' Remove a SPS tab
#' @description Remove a tab R file and remove from the tabs.csv config file
#' @param tab_id tab ID, string, length 1, supports regular expressions, so
#' be careful. If more than one tabs are matched, stop by default
#' @param force bool, whether to ask for confirmation
#' @param app_path app directory
#' @param multiple bool, if matched more than one tab, turn this to *TRUE* can
#' remove more than one tab at a time. Be careful.
#' @param verbose bool, follows project setting, but can be overwrite.
#' *TRUE* will give you more information
#' @param colorful bool, whether the message will be colorful?
#' @return remove the tab file and register info in *tabs.csv*
#' @export
#' @importFrom dplyr slice pull filter
#' @importFrom rlang enquo
#' @importFrom vroom vroom
#' @importFrom utils menu
#' @examples
#' spsInit(change_wd = FALSE, overwrite = TRUE)
#' spsNewTab("vs_new", app_path = glue::glue("SPS_{format(Sys.time(), '%Y%m%d')}"))
#' removeSpsTab("vs_new", force = TRUE,
#'              app_path = glue::glue("SPS_{format(Sys.time(), '%Y%m%d')}"))
removeSpsTab <- function(tab_id="none", force = FALSE,
                         app_path = getwd(), multiple = FALSE,
                         verbose = spsOption('verbose'),
                         colorful = spsOption('use_crayon')){
    assert_that(is.character(tab_id) & length(tab_id) == 1)
    assert_that(is.logical(multiple))
    assert_that(is.logical(verbose))
    assert_that(is.logical(force))
    spsinfo("checking tabs.csv and R folder", verbose)
    if(multiple) msg("You are allowing to remove more than 1 tabs at a time!",
                     "SPS-DANGER", "red")
    tab_file_path <- file.path(app_path, "config", "tabs.csv")
    if(!dir.exists(file.path(app_path, "R"))){
        spserror(glue("{file.path(app_path, 'R')} does not exist"))
    }
    if(!file.exists(tab_file_path)){
        spserror(glue("tabs.csv does not exist under config folder"))
    }
    spsinfo("Reading tabs.csv", verbose)
    tabs <- readLines(tab_file_path)
    header <- tabs[str_which(tabs, "^#")]
    tab_info <- suppressMessages(
        vroom::vroom(tab_file_path, comment = "#", na = character(),
                     altrep = FALSE))
    spsinfo("Check matching", verbose)
    matched_rows <- str_which(tab_info[['tab_id']], tab_id)
    matched_ids <- dplyr::slice(tab_info, matched_rows) %>%
        dplyr::pull(tab_id)
    if(length(matched_rows) == 0){
        return(spswarn("No row matched"))
    } else if(length(matched_rows) > 1 & !multiple){
        glue_collapse(tab_info[['tab_id']][matched_rows], sep = ", ") %>%
            {spswarn(glue("matched more than one: {.}"))}
        spserror("Remove multiple is FALSE, abort")
    }
    glue_collapse(matched_ids, sep = ", ") %>% {
        spsinfo(glue("Matched tab(s): {.}"), TRUE)
    }
    if(!force){
        switch(utils::menu(c("YES", "NO"), title = "Continue?"),
               {},
               return(spsinfo("Abort", TRUE))
        )
    }
    dplyr::slice(tab_info, matched_rows) %>%
        dplyr::filter(type %in% c("core", "wf")) %>%
        dplyr::pull(tab_id) %>%
        {if(length(.) > 0){
            glue_collapse(., sep = ", ") %>%{
                spserror(glue("Core and workflow tabs are not allowed to remove,
                             match: {.}"))}
        }}
    spsinfo("Saving back to tabs.csv", verbose)
    tabs_left <- dplyr::slice(tab_info, -matched_rows)
    c(header, names(tab_info) %>% glue_collapse(sep = ","),
      apply(tabs_left, 1, paste, collapse = ",")) %>%
        writeLines(tab_file_path)
    spsinfo(glue("{length(matched_rows)} tabs removed from tabs.csv"), TRUE)
    spsinfo("Now remove tab R files", verbose)
    remove_paths <- dplyr::slice(tab_info, matched_rows) %>%
        dplyr::pull(tab_file_name) %>%
        file.path(app_path, "R", .)
    for(i in remove_paths){
        spsinfo(glue("Now remove file {i}"), TRUE)
        shinyCatch(file.remove(i), shiny = FALSE)
    }
    msg("Removal complete", "SPS-SUCCESS", "green")
    return(invisible())
}

## Internal

# deparse rlang quotes to strings
#' @importFrom rlang eval_tidy
.expr2string <- function(quo_expr, use_string = FALSE){
    if(!use_string){
        quo_expr %>%
            rlang::expr_deparse() %>%
            remove_ANSI() %>%
            str_remove("^\\^") %>%
            glue_collapse(sep = "\n")
    } else{
        try(rlang::eval_tidy(quo_expr), silent = TRUE) %>% {
            if(!is.character(.))
                spserror(c("use_string is TRUE but input is not a string ",
                           "or an expression that returns a string"))}
        glue_collapse(rlang::eval_tidy(quo_expr), sep = "\n")
    }
}

# register a tab to config file
.tabRegister <- function(tab_id, display_name = "tab_title", app_path = ".",
                         type="vs", type_sub = "", image = "",
                         displayed = 1,
                         tab_file_name = glue("tab_{tab_id}.R"),
                         plugin = ""){
    tab_path <- file.path(app_path, "config", "tabs.csv")
    write_info <- glue_collapse(c(tab_id, display_name, type,
                                  type_sub, image, displayed,
                                  tab_file_name, plugin), sep = ",")
    write(write_info, tab_path, append = TRUE)
    return(TRUE)
}

#' @importFrom rstudioapi isAvailable navigateToFile
#' @noRd
.registerTabWrapper <- function(type_sub = "plot", img = "", tab_id,
                                tab_displayname, app_path, out_p,
                                open_file, plugin){
    spsinfo("Now register your new tab to config/tab.csv", TRUE)
    register_result <- shinyCatch(
        .tabRegister(tab_id, tab_displayname, app_path,
                     type = "vs", type_sub = type_sub, image = img,
                     displayed = 1, plugin = plugin),
        shiny = FALSE
    )
    if(is.null(register_result)){
        spswarn("Can't register your tab, delete created R file")
        file.remove(out_p)
        spserror("Abort")
    }
    if(open_file){
        spsinfo("Now open the file for you")
        if(rstudioapi::isAvailable() & open_file)
            rstudioapi::navigateToFile(out_p)
    }
}

# must be used within main tab function
#' @importFrom styler style_file tidyverse_style
#' @noRd
.reformatTab <- function(reformat, out_p){
    if(reformat){
        spsinfo("reformat output R file")

        reformat_result <- shinyCatch(styler::style_file(
            normalizePath(out_p),
            transformers =
                styler::tidyverse_style(indent_by = 4,
                                        scope = "line_breaks")
        ), shiny = FALSE)
        if(!emptyIsFalse(reformat_result[['changed']])){
            spswarn("Can't reformat your R file, delete created R file")
            file.remove(out_p)
            spserror("Abort")
        }
    }
}

# prechecks before create a new tab
.newtabAsserts <- function(tab_id, tab_displayname, desc, author,
                           out_folder_path, out_p,
                           app_path, prepro_methods = list(),
                           plot_data = list(),
                           reformat, open_file,
                           type_sub, preview, img = ""){
    assert_that(is.character(tab_id) & length(tab_id) == 1)
    assert_that(is.character(img) & length(img) == 1)
    stopifnot(is.character(author))
    stopifnot(is.character(tab_displayname))
    stopifnot(is.character(out_folder_path))
    stopifnot(is.logical(reformat))
    stopifnot(is.logical(open_file))
    stopifnot(is.logical(preview))
    spsinfo("checking tab ID")
    switch (type_sub,
            'data' = {
                if(!str_detect(tab_id, "^data_"))
                    spserror("Tab ID must start with 'data_'")
            },
            'plot' = {
                if(!str_detect(tab_id, "^plot_"))
                    spserror("Tab ID must start with 'plot_'")
            }
    )
    spsinfo("checking output path")
    if(file.exists(out_p))
        spserror(glue("File {out_p} exists."))
    if(str_detect(string = tab_displayname, ",")){
        spserror("comma ',' detected in display name, not allowed")
    }
    stopifnot(is.character(desc))
    stopifnot(inherits(prepro_methods, "list"))
    stopifnot(inherits(plot_data, "list"))
    spsinfo("checking tab ID in tabs.csv")
    err <- try(findTabInfo(glue("{type_sub}_{tab_id}"),
                           tab_file = file.path(app_path, "config", "tabs.csv"),
                           force_reload = TRUE),
               silent = TRUE)
    if(inherits(err, "sps-tabinfo")){
        spserror(glue("Id '{tab_id}' exists, see your tabs.csv"))
    } else if(inherits(err, "try-error")){
        if(str_detect(
            err[[1]],
            glue(".*SPS-ERROR.*{glue('{type_sub}_{tab_id}')}"))){
            spsinfo("Tab id no conflict, continue.")
        } else spserror(err[[1]])

    }
    spsinfo("checking R folder")
    assert_that(dir.exists(file.path(app_path, "R")),
                msg = glue('folder {file.path(app_path, "R")} is not there'))
}


.resolveTabPkg <- function(pkgs){
    assert_that(is.list(pkgs))
    cran_pkg <- if(is.null(pkgs[['cran_pkg']])) "" else  pkgs[['cran_pkg']]
    bioc_pkg <- if(is.null(pkgs[['bioc_pkg']])) "" else  pkgs[['bioc_pkg']]
    github <- if(is.null(pkgs[['github']])) "" else  pkgs[['github']]
    assert_that(is.character(cran_pkg))
    assert_that(is.character(bioc_pkg))
    assert_that(is.character(github))
    lapply(github, function(x){
        if(str_detect(x, "/") | !emptyIsFalse(github)){
            if(str_split(x, "/", simplify = TRUE) %>% length >1 &
               !emptyIsFalse(github)){
                spserror(glue("github pkgs should has only one '/', find {x}"))
            }
        } else spserror(glue("github pkgs should be 'owner/repo', find {x}"))
    })
    cran_text <- glue_collapse(cran_pkg, sep = "', '") %>%
        {glue("'{.}'")} %>% {glue("cran_pkg = c({.}),")}
    bioc_text <- glue_collapse(bioc_pkg, sep = "', '") %>%
        {glue("'{.}'")} %>% {glue("bioc_pkg = c({.}),")}
    github_text <- glue_collapse(github, sep = "', '") %>%
        {glue("'{.}'")} %>% {glue("github = c({.})")}
    glue_collapse(c(cran_text, bioc_text, github_text), sep='\n')
}

#' Create a new SPS tab
#' @description create custom tabs in newer (> 1.1) version of SPS. The old
#' creation functions will be deprecated by next Bioconductor major release.
#' @param tab_id character string, length 1, must be unique. Use
#' [spsTabInfo(app_path = "YOUR_APP_PATH")][spsTabInfo()] to see current tab
#' IDs.
#' @param tab_displayname character string, length 1, the name to be displayed
#' on side navigation bar list and tab title
#' @param img realtive path, an image representation of the new plot. It can be
#'  a internet link or a local link which uses the *www* folder as the root.
#' e.g. drop your image *plot.png* inside *www/plot_list*, then the
#' link here is "plot_list/plot.png". You will see these images on "Custom Tabs"
#' main page. If no provided, a warning will be given on app start and an empty
#' image will show up on "Custom Tabs".
#' @param app_path string, app directory, default is current directory
#' @param out_folder_path string, which directory to write the new tab file,
#' default is the *R* folder in the SPS project. If you write the file other than
#' *R*, this file will not be automatically loaded by SPS or Shiny. You must source
#' it manually.
#' @param author character string, or a vector of strings. authors of the tab
#' @param template one of "simple" or "full", default "simple". "simple" gives a
#' tab file with minimum Shiny code, you can only focus on you R plotting code.
#' "full" gives the full tab code, so you can modify everything on the tab.
#' @param preview bool, *TRUE* will print the new tab code to console and will
#' not write the file and will not register the tab
#' @param reformat bool, whether to use [styler::style_file] reformat the code
#' @param open_file bool, if Rstudio is detected, open the new tab file?
#' @param verbose bool, default follows the project verbosity level.
#'  *TRUE* will give you more information on progress and debugging
#' @param colorful bool, whether the message will be colorful or not
#'
#' @return returns a new tab file
#' @export
#' @details
#' - template "simple": hides the UI and server code and use [spsEzUI] and [spsEzServer] instead.
#' - template "full": full tab code. You need to know some Shiny development knowledge.
#' @examples
#' spsInit(change_wd = FALSE, overwrite = TRUE)
#' spsNewTab("vs_newtab_ez", app_path = glue::glue("SPS_{format(Sys.time(), '%Y%m%d')}"))
#' spsNewTab("vs_newtab_full", template = "full",
#' app_path = glue::glue("SPS_{format(Sys.time(), '%Y%m%d')}"))
#' spsNewTab("vs_newtab_pre", preview = TRUE,
#' app_path = glue::glue("SPS_{format(Sys.time(), '%Y%m%d')}"))
spsNewTab <- function(tab_id = "vs_mytab",
                      tab_displayname = "My custom plotting tab",
                      img = "",
                      app_path = getwd(),
                      out_folder_path = file.path(app_path, "R"),
                      author = "",
                      template = c("simple", "full"),
                      preview = FALSE,
                      reformat = FALSE,
                      open_file = TRUE,
                      verbose = spsOption("verbose"),
                      colorful = spsOption("use_crayon")){
    #set up color and verbose
    verbose_old <- spsOption('verbose')
    colorful_old <- spsOption('use_crayon')
    spsOption('verbose', verbose)
    spsOption('use_crayon', colorful)
    # assertions
    assert_that(is.character(tab_id) & length(tab_id) == 1)
    assert_that(is.character(img) & length(img) == 1)
    stopifnot(is.character(author))
    stopifnot(is.character(tab_displayname))
    stopifnot(is.character(out_folder_path))
    template <- match.arg(template, c("simple", "full"))
    stopifnot(is.logical(reformat))
    stopifnot(is.logical(open_file))
    stopifnot(is.logical(preview))
    # check output folder
    spsinfo("checking R folder")
    assert_that(dir.exists(file.path(app_path, "R")),
                msg = glue('folder {file.path(app_path, "R")} is not there'))
    # check output path
    out_p <- file.path(out_folder_path, glue("tab_{tab_id}.R"))
    if(file.exists(out_p)) spserror(glue("File {out_p} exists."))
    if(str_detect(string = tab_displayname, ",")) spserror("comma ',' detected in display name, not allowed")
    # check tab id is in config
    err <- try(findTabInfo(tab_id,
                           tab_file = file.path(app_path, "config", "tabs.csv"),
                           force_reload = TRUE),
               silent = TRUE)
    if(inherits(err, "sps-tabinfo")){
        spserror(glue("Id '{tab_id}' exists, see your tabs.csv"))
    } else if(inherits(err, "try-error")){
        if(str_detect(
            err[[1]],
            glue(".*SPS-ERROR.*{tab_id}"))){
            spsinfo("Tab id no conflict, continue.")
        } else spserror(err[[1]])
    }

    # add creation time
    crt_date <- Sys.time()

    # parse info
    spsinfo("Asserting tab ID")
    spsinfo(glue("Asserting info for tab {tab_id}"))
    spsinfo("Parsing author(s)")
    author <- glue_collapse(author, sep = ", ")

    # make sure every injection is length 1
    list(tab_id, tab_displayname, author, crt_date) %>%
        {
            check_names <- c("tab Id", "display name", "author", "creation date")
            mapply(function(x, name){
                if(length(x) != 1){
                    spserror(glue("Injection {name} is not a length 1 string:
                              {glue_collapse(x, '\n---\n')}"))
                }
            }, x = ., name = check_names)
        }

    # tab creation starts
    spsinfo("Start to inject to template...")
    temp_path <- if(template == "simple") system.file("app", "templates", "tab_template_ez.R", package = "systemPipeShiny")
    else system.file("app", "templates", "tab_template_full.R", package = "systemPipeShiny")
    tmp <- readLines(temp_path) %>%
        glue_collapse(sep = '\n') %>%
        glue(.open = "#@", .close = "@#")
    # preview early return
    if(preview) return(cat(tmp))
    # write file
    spsinfo(glue("Write to file {out_p}"), TRUE)
    writeLines(tmp, out_p)
    # reformat
    .reformatTab(reformat, out_p)
    # register tab
    .registerTabWrapper(type_sub = "plot", img, tab_id, tab_displayname,
                        app_path, out_p, open_file, plugin = "")
    # finish and reset verbose to whatever before the function runs
    msg("New tab created!", "SPS-SUCCESS", "green")
    msg(glue('To load this new tab: `sps(tabs = c("{tab_id}")`'), "SPS", "green")
    spsOption('verbose', verbose_old)
    spsOption('use_crayon', colorful_old)
    return(invisible())
}



#' Easy and simple UI and server for a SPS custom tab
#' @description SPS custom tab simple UI and server , [spsEzUI] must use together
#' with the [spsEzServer] function. The easiest way to use is to
#' use [spsNewTab] function to create both.
#' @param desc character string, length 1 in markdown format. Tab description
#' and instructions. You can make type it in multiple lines but in only one
#' string (one pair of quotes). e.g.
#' ```
#' "
#' # some desc
#' ## second line,
#' - bullet 1
#' - bullet 2
#' "
#' ```
#' @param tab_title string, tab title
#' @param plot_title  string, plot title
#' @param plot_control some Shiny components (UI) to control the plot, like plot
#' title, x,y labels, color, font size, etc. Group all components in a shiny
#' `tagList`.
#'
#' @return `spsEzUI` returns a shiny module UI function, `spsEzServer` returns
#' the server function
#' @seealso [spsNewTab]
#' @export
#'
#' @examples
#' # use `spsInit()` to create an SPS project and use `spsNewTab("Your_tabID", template = "easy")`
#' # to create a new tab file. The specified use of these two functions is in that file.
spsEzUI <- function(desc="", tab_title = "Tab Title",
                    plot_title = "My Plot",
                    plot_control = shiny::tagList()){
    plot_control <- rlang::enexpr(plot_control)
    function(id){
        ns <- NS(id)
        plot_control <- rlang::eval_tidy(plot_control)
        assert_that(inherits(plot_control, "shiny.tag.list"))
        tagList(
            tabTitle(tab_title),
            if(emptyIsFalse(desc)) renderDesc(id = ns("desc"), desc) else "",
            ## Progress
            h3("Confirm dataset", class = "text-center text-info"),
            spsTimeline(
                ns("df_status"),
                up_labels = c("1", "2"),
                down_labels = c("Dataset", "Data Ready"),
                icons = list(
                    icon("table"),
                    icon("check")
                ),
                completes = c(TRUE, FALSE)
            ),
            bsplus::bs_accordion(id = ns("main_panel")) %>%
                bsplus::bs_set_opts(panel_type = "info") %>%
                bsplus::bs_append(
                    title = "1. Confirm to use example table or upload a new one",
                    fluidRow(
                        h3("Load table"),
                        column(
                            3,
                            box(
                                closable = FALSE, width = 12,
                                radioGroupButtons(
                                    inputId = ns("source_df"),
                                    label = "Choose your file source:",
                                    selected = "eg",
                                    choiceNames = c("Upload", "Example"),
                                    choiceValues = c("upload", "eg"),
                                    justified = TRUE, status = "primary",
                                    checkIcon = list(
                                        yes = icon("ok", lib = "glyphicon"),
                                        no = "")
                                ),
                                dynamicFile(id = ns("df_upload")),
                                selectizeInput(
                                    inputId = ns("df_delim"),
                                    label = "File delimiter",
                                    choices = c(`,`=",", Tab="\t", space=" ",
                                                `|`="|", `:`=":", `;`=";"),
                                    options = list(style = "btn-primary")
                                ),
                                clearableTextInput(
                                    ns("df_comment"), "File comments", value = "#")
                            ),
                            box(
                                closable = FALSE, width = 12,
                                title = "Confirm to use this table",
                                actionButton(ns("add_df"), "Confirm")
                            )
                        ),
                        box(
                            closable = FALSE, width = 9,
                            DT::DTOutput(ns("df_out"))
                        )
                    )
                )%>%
                bsplus::bs_append(
                    title = "2. Make a plot",
                    fluidRow(
                        div(
                            id = ns("plot_container"),
                            style = "display: none;",
                            column(
                                3,
                                div(
                                    class = "panel panel-info",
                                    id = ns("panel_left"),
                                    style = "min-height: 500px;",
                                    div(
                                        id = "",
                                        class = "panel-heading",
                                        h4(class = "panel-title", "Plot control")
                                    ),
                                    div(
                                        class = "panel-body",
                                        style = "overflow-y: auto; height: Calc(100% - 38.5px); margin: 0 10px;",
                                        fluidRow(
                                            style = 'margin-top: 25px;',
                                            class = "text-center",
                                            canvasBtn(ns("plot_main"))
                                        ),
                                        spsHr(),
                                        plot_control
                                    )
                                )
                            ),
                            column(
                                9,
                                div(
                                    class = "panel panel-info",
                                    id = ns("panel_right"),
                                    style = "min-height: 500px;",
                                    div(
                                        id = "",
                                        class = "panel-heading",
                                        h4(class = "panel-title", plot_title)
                                    ),
                                    div(
                                        class = "panel-body",
                                        id = ns("plot_container"),
                                        style = "overflow-y: auto; height: Calc(100% - 38.5px); margin: 0 10px;",
                                        shinyjqui::jqui_resizable(plotOutput(ns("plot_main")))
                                    ),
                                )
                            ),
                            heightMatcher(ns("panel_left"), ns("panel_right")),

                        ),
                        div(
                            id = ns("plot_disable"),
                            h3("Confirm to use a data table first",
                               class = "text-center text-warning")
                        )
                    )
                ),
            spsHr(),
            hexPanel(ns("poweredby"), "THIS TAB IS POWERED BY:",
                     hex_imgs = c(
                         "img/sps_small.png"
                     ),
                     hex_titles = c("SystemPipeShiny"),
                     hex_links = c(
                         "https://github.com/systemPipeR/systemPipeShiny/"
                     ),
                     ys = c("-20"),
                     xs = c("-10")
            )
        )
    } %>%
        return()
}



#' @param plot_code some R code to make the plot.
#' @param example_data_path example dataset path, this dataset will be loaded on
#' app start to display
#' @param other_server_code optional, other server R code to run for this tab
#' @rdname spsEzUI
#' @export
spsEzServer <- function(
    plot_code,
    example_data_path = system.file(package = "systemPipeShiny", "app", "data", "iris.csv"),
    other_server_code = ""){
    stopifnot(file.exists(example_data_path))
    plot_code <- rlang::enexpr(plot_code)
    other_server_code <- rlang::enexpr(other_server_code)

    function(id, shared) {
        module <- function(input, output, session) {
            ns <- session$ns
            tab_id <- id
            mydata <- reactiveValues(data = NULL)
            # load table ----
            df_path <- dynamicFileServer(input, session, id = "df_upload")
            observeEvent(input$source_df, {
                shinyjs::toggleElement(id = "df_upload", condition = input$source_df =="upload", anim = TRUE)
            })

            data_df <- reactive({
                loadDF(
                    choice = input$source_df,
                    upload_path =  df_path()$datapath,
                    delim = input$df_delim,
                    data_init = data.frame(),
                    comment = input$df_comment,
                    eg_path = example_data_path
                )
            })
            # render table ----
            output$df_out <- DT::renderDT({
                DT::datatable(
                    data_df(),
                    style = "bootstrap",
                    class = "compact",  filter = "top",
                    extensions = c( 'Scroller'),
                    options = list(
                        deferRender = TRUE,
                        scrollY = 200, scrollX = TRUE, scroller = TRUE,
                        columnDefs = list(list(className = 'dt-center',
                                               targets = "_all"))
                    )
                )
            })
            # confirm table ----
            observeEvent(input$add_df, {
                # clear status on click start
                updateSpsTimeline(session, "df_status", 2, FALSE)
                shinyjs::removeCssClass("main_panel-0", "panel-success")
                shinyjs::addCssClass("main_panel-0", "panel-info")
                shinyjs::removeCssClass("main_panel-1", "panel-success")
                shinyjs::addCssClass("main_panel-1", "panel-info")
                shinyjs::hide("plot_container")
                shinyjs::show("plot_disable")
                # check
                df_filter <- data_df()[input$df_out_rows_all, ]
                spsValidate(verbose = FALSE, {
                    if(!not_empty(df_filter))
                        stop("Table is empty")
                    if(!nrow(df_filter) > 0)
                        stop("Table has fewer than 1 row")
                    if(nrow(df_filter) < 5)
                        warning("You table has very a few rows, consider to add more")
                    TRUE
                })
                # add data
                mydata$data <- df_filter
                # send success
                shinyWidgets::confirmSweetAlert(
                    session = session,
                    inputId = ns("confirm_to_plot"),
                    title = "Table added!",
                    closeOnClickOutside = FALSE,
                    html = TRUE,
                    type = "success",
                    text = div(
                        h3("Continue to make plots?"),
                        HTML("Or manually click <span class='text-info'>2. Make a plot</span> panel")
                    )
                )
                updateSpsTimeline(session, "df_status", 2, TRUE)
                shinyjs::removeCssClass("main_panel-0", "panel-info")
                shinyjs::addCssClass("main_panel-0", "panel-success")
                shinyjs::removeCssClass("main_panel-1", "panel-info")
                shinyjs::addCssClass("main_panel-1", "panel-success")
                shinyjs::show("plot_container")
                shinyjs::hide("plot_disable")
            }, ignoreInit = TRUE)

            # jump to plotting
            observeEvent(input$confirm_to_plot, {
                req(input$confirm_to_plot)
                shinyjs::runjs(paste0("$('#", ns(""), "main_panel-1-heading > h4').trigger('click');"))
            })

            output$plot_main <- renderPlot({
                req(mydata$data)
                rlang::eval_tidy(plot_code)
            })

            rlang::eval_tidy(other_server_code)
        }
        moduleServer(id, module)
    } %>%
        return()
}
systemPipeR/systemPipeShiny documentation built on Oct. 17, 2023, 3:40 a.m.