# copyright: Xi Wang (xi.wang@newcastle.edu.au)
# two subfunctions to solve D-equation
phifun <- function(x, ctable, mu) {
n_exon <- nrow(ctable)
n_sample <- ncol(ctable)
f <- (ctable + x) * log((ctable + x)/(mu + x)) -
ctable * log(ctable/mu)
sum(f) + (n_exon-1)*(n_sample-1)/2
}
dphifun <- function(x, ctable, mu) {
f <- log((ctable + x)/(mu + x)) + (mu - ctable) / (mu + x)
sum(f)
}
estiPhi <- function(ctable) {
n_exon <- nrow(ctable)
n_sample <- ncol(ctable)
m <- colSums(ctable)
# initialize w and prob
w <- m/sum(m)
prob <- rowSums(ctable) / sum(m)
# initialize dispersion
x <- 1e-6 ###initial value 1e-6, x=1/phi
mu <- prob %*% t(m)
xnew <- x - phifun(x, ctable, mu)/dphifun(x, ctable, mu)
phi <- 1/xnew
if(phi == 0) {
iternum <- 1
obj <- list(phi, w, prob, iternum)
names(obj) <- c("phi", "weights", "prob", "iternum")
return(obj)
}
iter_max <- 1000
iternum_phi <- 1
# estimate phi using Newton iteration method
while (iternum_phi <= iter_max) {
x <- xnew
phi_fun <- phifun(x, ctable, mu)
if( abs(phi_fun) < 1e-8 ) {break}
iternum_phi <- iternum_phi + 1
xnew <- x - phi_fun / dphifun(x, ctable, mu)
if ( abs(xnew/x - 1) < 1e-6 ) {break}
if(xnew > 1e10) { xnew <- Inf; break }
if(xnew < -1e10) { xnew <- -Inf; break }
}
phinew <- 1/xnew
# iterate to get phi and prob
iternum <- 1
while(iternum <= iter_max) {
iternum <- iternum + 1
phi <- phinew
# update w
p2 <- sum(prob^2)
w <- m / (1 + phi * p2 * m )
w <- w/sum(w)
# update prob
prob <- ctable %*% (w / m)
# update phi
x <- 1e-6 ###initial value 1e-6, x=1/phi
mu <- prob %*% t(m)
xnew <- x - phifun(x, ctable, mu)/dphifun(x, ctable, mu)
iternum_phi <- 1
while (iternum_phi <= iter_max) {
x <- xnew
phi_fun <- phifun(x, ctable, mu)
if( abs(phi_fun) < 1e-8 ) {break}
iternum_phi <- iternum_phi + 1
xnew <- x - phi_fun / dphifun(x, ctable, mu)
if ( abs(xnew/x - 1) < 1e-6 ) {break}
if(xnew > 1e10) { xnew <- Inf; break }
if(xnew < -1e10) { xnew <- -Inf; break }
}
phinew <- 1/xnew
if(phinew == 0) { break }
if(abs(phinew/phi-1) < 1e-6) { break }
}
phi <- phinew
if(phi < 0) {
phi <- 0
w <- m/sum(m)
prob <- rowSums(ctable) / sum(m)
}
obj <- list(phi, w, as.vector(prob), iternum)
names(obj) <- c("phi", "weights", "prob", "iternum")
obj
}
calVar <- function(q, m) {
p <- q$prob
phi <- q$phi
w <- q$weights
w2 <- w * w
w2m <- w2 / m
sum1 <- sum(w2)
sum2 <- sum(w2m)
phi * sum1 * p * p + sum2 * p
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.