skip_on_cran()
skip_on_os(c("mac", "solaris"))
skip_if_not_installed("VGAM")
unloadNamespace("gam")
test_that("ggpredict", {
d.AD <- data.frame(
treatment = gl(3, 3),
outcome = gl(3, 1, 9),
counts = c(18, 17, 15, 20, 10, 20, 25, 13, 12)
)
m1 <- VGAM::vglm(
counts ~ outcome + treatment,
family = VGAM::poissonff,
data = d.AD,
trace = TRUE
)
p <- ggpredict(m1, "outcome")
expect_equal(p$predicted[1], 21, tolerance = 1e-3)
})
test_that("ggpredict", {
set.seed(123)
N <- 100
X1 <- rnorm(N, 175, 7)
X2 <- rnorm(N, 30, 8)
Ycont <- 0.5 * X1 - 0.3 * X2 + 10 + rnorm(N, 0, 6)
Yord <- cut(
Ycont,
breaks = quantile(Ycont),
include.lowest = TRUE,
labels = c("--", "-", "+", "++"),
ordered = TRUE
)
dfOrd <- data.frame(X1, X2, Yord)
m2 <- VGAM::vglm(Yord ~ X1 + X2, family = VGAM::propodds, data = dfOrd)
p <- ggpredict(m2, terms = "X1")
expect_equal(p$predicted[1], 0.2633227, tolerance = 1e-3)
expect_identical(nrow(p), 27L)
p <- ggpredict(m2, terms = "X1", ci_level = NA)
expect_equal(p$predicted[1], 0.7366773, tolerance = 1e-3)
expect_identical(nrow(p), 36L)
})
test_that("ggpredict", {
data(pneumo, package = "VGAM")
pneumo <- transform(pneumo, let = log(exposure.time))
m3 <- VGAM::vglm(cbind(normal, mild, severe) ~ let, VGAM::propodds, data = pneumo)
p <- ggpredict(m3, "let")
expect_equal(p$predicted[1], 0.005992263, tolerance = 1e-3)
expect_identical(nrow(p), 16L)
p <- ggpredict(m3, "let", ci_level = NA)
expect_equal(p$predicted[1], 0.9940077, tolerance = 1e-3)
expect_identical(nrow(p), 24L)
})
test_that("ggpredict, multivariate vglm", {
data("hunua", package = "VGAM")
shunua <- hunua[sort.list(with(hunua, altitude)), ]
fit <- VGAM::vglm(cbind(agaaus, kniexc) ~ altitude,
VGAM::binomialff(multiple.responses = TRUE),
data = shunua
)
# validate against predict
out <- ggpredict(fit, "altitude [all]")
nd <- new_data(fit, "altitude [all]")
pr <- as.data.frame(predict(fit, newdata = nd))
expect_equal(out$predicted[c(TRUE, FALSE)], plogis(pr[[1]]), tolerance = 1e-3)
expect_equal(out$predicted[c(FALSE, TRUE)], plogis(pr[[2]]), tolerance = 1e-3)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.