#' @export
get_predictions.svyglm <- function(model,
data_grid = NULL,
terms = NULL,
ci_level = 0.95,
type = NULL,
typical = NULL,
vcov = NULL,
vcov_args = NULL,
condition = NULL,
interval = "confidence",
bias_correction = FALSE,
link_inverse = insight::link_inverse(model),
model_info = NULL,
verbose = TRUE,
...) {
# does user want standard errors?
se <- !is.null(ci_level) && !is.na(ci_level)
# compute ci, two-ways
if (!is.null(ci_level) && !is.na(ci_level)) {
ci <- (1 + ci_level) / 2
} else {
ci <- 0.975
}
# degrees of freedom
dof <- .get_df(model)
tcrit <- stats::qt(ci, df = dof)
# get predictions
prdat <- stats::predict(
model,
newdata = data_grid,
type = "link",
se.fit = se,
...
)
# check if user wants standard errors
if (se) {
# get variance matrix for standard errors. "survey" stores the information
# somewhat different from classical predict function
vv <- attr(prdat, "var")
# compute standard errors
if (is.matrix(vv)) {
prdat <- as.data.frame(cbind(prdat, sqrt(diag(vv))))
} else {
prdat <- as.data.frame(cbind(prdat, sqrt(vv)))
}
# consistent column names
colnames(prdat) <- c("fit", "se.fit")
# copy predictions
data_grid$predicted <- link_inverse(prdat$fit)
# calculate CI
data_grid$conf.low <- link_inverse(prdat$fit - tcrit * prdat$se.fit)
data_grid$conf.high <- link_inverse(prdat$fit + tcrit * prdat$se.fit)
# copy standard errors
attr(data_grid, "std.error") <- prdat$se.fit
} else {
# copy predictions
data_grid$predicted <- link_inverse(as.vector(prdat))
# no CI
data_grid$conf.low <- NA
data_grid$conf.high <- NA
}
data_grid
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.