#' @export
get_predictions.mixor <- function(model,
data_grid = NULL,
terms = NULL,
ci_level = 0.95,
type = NULL,
typical = NULL,
vcov = NULL,
vcov_args = NULL,
condition = NULL,
interval = "confidence",
bias_correction = FALSE,
link_inverse = insight::link_inverse(model),
model_info = NULL,
verbose = TRUE,
...) {
se <- (!is.null(ci_level) && !is.na(ci_level))
# compute ci, two-ways
if (!is.null(ci_level) && !is.na(ci_level))
ci <- (1 + ci_level) / 2
else
ci <- 0.975
# degrees of freedom
dof <- .get_df(model)
tcrit <- stats::qt(ci, df = dof)
prdat <- stats::predict(
model,
newdata = data_grid,
...
)
prdat <- as.data.frame(prdat$predicted)
# bind predictions to model frame
data_grid <- cbind(prdat, data_grid)
# for proportional ordinal logistic regression (see MASS::polr),
# we have predicted values for each response category. Hence,
# gather columns
data_grid <- .gather(data_grid, names_to = "response.level", values_to = "predicted", colnames(prdat))
se.pred <- .standard_error_predictions(
model = model,
prediction_data = data_grid,
typical = typical,
terms = terms,
condition = condition,
interval = interval
)
if (.check_returned_se(se.pred) && isTRUE(se)) {
se.fit <- se.pred$se.fit
data_grid <- se.pred$prediction_data
# CI
data_grid$conf.low <- link_inverse(stats::qlogis(data_grid$predicted) - tcrit * se.fit)
data_grid$conf.high <- link_inverse(stats::qlogis(data_grid$predicted) + tcrit * se.fit)
# copy standard errors
attr(data_grid, "std.error") <- se.fit
attr(data_grid, "prediction.interval") <- attr(se.pred, "prediction_interval")
} else {
# CI
data_grid$conf.low <- NA
data_grid$conf.high <- NA
}
data_grid
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.