#' @export
get_predictions.lrm <- function(model,
data_grid = NULL,
terms = NULL,
ci_level = 0.95,
type = NULL,
typical = NULL,
vcov = NULL,
vcov_args = NULL,
condition = NULL,
interval = "confidence",
bias_correction = FALSE,
link_inverse = insight::link_inverse(model),
model_info = NULL,
verbose = TRUE,
...) {
# does user want standard errors?
se <- !is.null(ci_level) && !is.na(ci_level)
# compute ci, two-ways
if (!is.null(ci_level) && !is.na(ci_level)) {
ci <- (1 + ci_level) / 2
} else {
ci <- 0.975
}
# degrees of freedom
dof <- .get_df(model)
tcrit <- stats::qt(ci, df = dof)
# for ordinal models, we need special handling
if (isTRUE(model_info$is_ordinal)) {
prdat <- stats::predict(
model,
newdata = data_grid,
type = "fitted.ind",
se.fit = FALSE,
...
)
# bind predictions to model frame
data_grid <- cbind(prdat, data_grid)
# reshape
data_grid <- .gather(
data_grid,
names_to = "response.level",
values_to = "predicted",
colnames(prdat)
)
# No CI
data_grid$conf.low <- NA
data_grid$conf.high <- NA
} else {
prdat <- stats::predict(
model,
newdata = data_grid,
type = "lp",
se.fit = se,
...
)
# copy predictions
data_grid$predicted <- stats::plogis(prdat$linear.predictors)
# did user request standard errors? if yes, compute CI
if (se) {
# calculate CI
data_grid$conf.low <- stats::plogis(prdat$linear.predictors - tcrit * prdat$se.fit)
data_grid$conf.high <- stats::plogis(prdat$linear.predictors + tcrit * prdat$se.fit)
# copy standard errors
attr(data_grid, "std.error") <- prdat$se.fit
} else {
# No CI
data_grid$conf.low <- NA
data_grid$conf.high <- NA
}
}
data_grid
}
#' @export
get_predictions.orm <- get_predictions.lrm
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.