#' @export
get_predictions.lme <- function(model,
data_grid = NULL,
terms = NULL,
ci_level = 0.95,
type = NULL,
typical = NULL,
vcov = NULL,
vcov_args = NULL,
condition = NULL,
interval = "confidence",
bias_correction = FALSE,
link_inverse = insight::link_inverse(model),
model_info = NULL,
verbose = TRUE,
...) {
# does user want standard errors?
se <- (!is.null(ci_level) && !is.na(ci_level)) || !is.null(vcov)
# compute ci, two-ways
if (!is.null(ci_level) && !is.na(ci_level)) {
ci <- (1 + ci_level) / 2
} else {
ci <- 0.975
}
# degrees of freedom
dof <- .get_df(model)
tcrit <- stats::qt(ci, df = dof)
if (inherits(model, "glmmPQL")) {
pr.type <- "link"
} else {
pr.type <- "response"
}
prdat <- suppressWarnings(stats::predict(
model,
newdata = data_grid,
type = pr.type,
level = 0, # always population level, see #267
...
))
# copy predictions
data_grid$predicted <- as.vector(prdat)
# did user request standard errors? if yes, compute CI
if (se) {
se.pred <- .standard_error_predictions(
model = model,
prediction_data = data_grid,
typical = typical,
terms = terms,
type = type,
vcov = vcov,
vcov_args = vcov_args,
condition = condition,
interval = interval
)
if (.check_returned_se(se.pred)) {
se.fit <- se.pred$se.fit
data_grid <- se.pred$prediction_data
# calculate CI
data_grid$conf.low <- data_grid$predicted - tcrit * se.fit
data_grid$conf.high <- data_grid$predicted + tcrit * se.fit
# copy standard errors
attr(data_grid, "std.error") <- se.fit
attr(data_grid, "prediction.interval") <- attr(se.pred, "prediction_interval")
} else {
# No CI
data_grid$conf.low <- NA
data_grid$conf.high <- NA
}
} else {
# No CI
data_grid$conf.low <- NA
data_grid$conf.high <- NA
}
# for glmmPQL, we need to back-transform using link-inverse
if (inherits(model, "glmmPQL")) {
data_grid$predicted <- link_inverse(data_grid$predicted)
data_grid$conf.low <- link_inverse(data_grid$conf.low)
data_grid$conf.high <- link_inverse(data_grid$conf.high)
}
data_grid
}
#' @export
get_predictions.gls <- get_predictions.lme
#' @export
get_predictions.glmmPQL <- get_predictions.lme
#' @export
get_predictions.plm <- get_predictions.lme
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.