#' @export
get_predictions.cgam <- function(model,
data_grid = NULL,
terms = NULL,
ci_level = 0.95,
type = NULL,
typical = NULL,
vcov = NULL,
vcov_args = NULL,
condition = NULL,
interval = "confidence",
bias_correction = FALSE,
link_inverse = NULL,
model_info = NULL,
verbose = TRUE,
...) {
# does user want standard errors?
se <- !is.null(ci_level) && !is.na(ci_level)
# does user want standard errors?
if (se) {
interval <- "confidence"
} else {
interval <- "none"
}
# compute ci, two-ways
if (!is.null(ci_level) && !is.na(ci_level)) {
ci <- (1 + ci_level) / 2
} else {
ci <- 0.975
}
# degrees of freedom
dof <- .get_df(model)
tcrit <- stats::qt(ci, df = dof)
prdat <- stats::predict(
model,
newData = data_grid,
type = "link",
interval = "none",
...
)
# copy predictions
if (typeof(prdat) == "double") {
.predicted <- prdat
} else {
.predicted <- prdat$fit
}
# get predicted values, on link-scale
data_grid$predicted <- .predicted
# get standard errors, if computed
if (se) {
se.pred <- .standard_error_predictions(
model = model,
prediction_data = data_grid,
typical = typical,
terms = terms,
vcov = NULL,
vcov_args = NULL,
condition = condition,
interval = interval
)
if (.check_returned_se(se.pred)) {
data_grid <- se.pred$prediction_data
se.fit <- se.pred$se.fit
se <- TRUE
} else {
se.fit <- NULL
se <- FALSE
}
} else {
se.pred <- NULL
}
if (se) {
data_grid$conf.low <- link_inverse(data_grid$predicted - tcrit * se.fit)
data_grid$conf.high <- link_inverse(data_grid$predicted + tcrit * se.fit)
# copy standard errors
attr(data_grid, "std.error") <- se.fit
if (!is.null(se.pred) && length(se.pred) > 0) {
attr(data_grid, "prediction.interval") <- attr(se.pred, "prediction_interval")
}
} else {
# No CI
data_grid$conf.low <- NA
data_grid$conf.high <- NA
}
# transform predicted values
data_grid$predicted <- link_inverse(data_grid$predicted)
data_grid
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.