R/SMC.R

Defines functions stat_test_subgroups stat_test_SMC SMC run_SMC

Documented in run_SMC SMC stat_test_SMC stat_test_subgroups

# Copyright © 2014-2019  The YAPSA package contributors
# This file is part of the YAPSA package. The YAPSA package is licenced under
# GPL-3

#' Wrapper function for the Stratification of a Mutational Catalogue
#'
#' \code{\link{run_SMC}} takes as input a big dataframe constructed from a
#' vcf-like file of a whole cohort. This wrapper function calls custom functions
#' to construct a mutational catalogue and stratify it according to categories
#' indicated by a special column in the input dataframe: \itemize{ \item
#' \code{\link{create_mutation_catalogue_from_df}} \item
#' \code{adjust_number_of_columns_in_list_of_catalogues} } This stratification
#' yields a collection of stratified mutational catalogues, these are
#' reformatted and sent to the custom function \code{\link{SMC}} and thus
#' indirectly to \code{\link{LCD_SMC}} to perform a signature analysis of the
#' stratified mutational catalogues. The result is then handed over to
#' \code{\link{plot_SMC}} for visualization.
#'
#' @param my_table A big dataframe constructed from a vcf-like file of a whole
#'   cohort. The first columns are those of a standard vcf file, followed by an
#'   arbitrary number of custom or user defined columns. One of these must carry
#'   a PID (patient or sample identifyier) and one must be the category used for
#'   stratification.
#' @param this_signatures_df A numeric data frame \code{W} in with \code{n} rows
#'   and \code{l} columns, \code{n} being the number of features and \code{l}
#'   being the number of signatures
#' @param this_signatures_ind_df A data frame containing meta information about
#'   the signatures
#' @param this_subgroups_df A data frame indicating which PID (patient or sample
#'   identifyier) belongs to which subgroup
#' @param column_name Name of the column in \code{my_table} which is going to be
#'   used for stratification
#' @param refGenome FaFile of the reference genome to extract the motif context
#'   of the variants in \code{my_table}
#' @param cohort_method_flag Either or several of
#'   \code{c("all_PIDs","cohort","norm_PIDs")}, representing alternative ways to
#'   average over the cohort.
#' @param in_strata_order_ind Index vector defining reordering of the strata
#' @param wordLength Integer number defining the length of the features or
#'   motifs, e.g. 3 for tripletts or 5 for pentamers
#' @param verbose_flag Verbose if \code{verbose_flag=1}
#' @param target_dir Path to directory where the results of the stratification
#'   procedure are going to be stored if non-NULL.
#' @param strata_dir Path to directory where the mutational catalogues of the
#'   different strata are going to be stored if non-NULL
#' @param output_path Path to directory where the results, especially the
#'   figures produced by \code{\link{plot_SMC}} are going to be stored.
#' @param in_all_exposures_df Optional argument, if specified, \code{H}, i.e.
#'   the overall exposures without stratification, is set to equal
#'   \code{in_all_exposures_df}. This is equivalent to forcing the
#'   \code{\link{LCD_SMC}} procedure to use e.g. the exposures of a previously
#'   performed NMF decomposition.
#' @param in_rownames Optional parameter to specify rownames of the mutational
#'   catalogue \code{V} i.e. the names of the features.
#' @param in_norms If specified, vector of the correction factors for every
#'   motif due to differing trinucleotide content. If null, no correction is
#'   applied.
#' @param in_label_orientation Whether or not to turn the labels on the x-axis.
#' @param this_sum_ind Optional set of indices for reordering the PIDs
#'
#' @return A list with entries \code{exposures_list}, \code{catalogues_list},
#'   \code{cohort} and \code{name_list}. \itemize{ \item \code{exposures_list}:
#'   The list of \code{s} strata specific exposures Hi, all are numerical data
#'   frames with \code{l} rows and \code{m} columns, \code{l} being the number
#'   of signatures and \code{m} being the number of samples \item
#'   \code{catalogues_list}: A list of \code{s} strata specific cohortwide (i.e.
#'   averaged over cohort) normalized exposures \item \code{cohort}:
#'   \code{subgroups_df} adjusted for plotting \item \code{name_list}: Names of
#'   the contructed strata. }
#'
#' @examples
#'  library(BSgenome.Hsapiens.UCSC.hg19)
#'  data(sigs)
#'  data(lymphoma_test)
#'  data(lymphoma_cohort_LCD_results)
#'  strata_list <-
#'    cut_breaks_as_intervals(lymphoma_test_df$random_norm,
#'                            in_outlier_cutoffs=c(-4,4),
#'                            in_cutoff_ranges_list=list(c(-2.5,-1.5),
#'                                                       c(0.5,1.5)),
#'                            in_labels=c("small","intermediate","big"))
#'  lymphoma_test_df$random_cat <- strata_list$category_vector
#'  choice_ind <- (names(lymphoma_Nature2013_COSMIC_cutoff_exposures_df)
#'                 %in% unique(lymphoma_test_df$PID))
#'  lymphoma_test_exposures_df <-
#'    lymphoma_Nature2013_COSMIC_cutoff_exposures_df[,choice_ind]
#'  temp_subgroups_df <- make_subgroups_df(lymphoma_test_df,
#'                                         lymphoma_test_exposures_df)
#'  mut_density_list <- run_SMC(lymphoma_test_df,
#'                              AlexCosmicValid_sig_df,
#'                              AlexCosmicValid_sigInd_df,
#'                              temp_subgroups_df,
#'                              column_name="random_cat",
#'                              refGenome=BSgenome.Hsapiens.UCSC.hg19,
#'                              cohort_method_flag="norm_PIDs",
#'                              in_rownames = rownames(AlexCosmicValid_sig_df))
#'
#' @seealso \code{\link{create_mutation_catalogue_from_df}}
#' @seealso \code{\link{normalizeMotifs_otherRownames}}
#' @seealso \code{\link{plot_SMC}}
#'
#' @export
#' 
run_SMC <- 
  function(my_table, this_signatures_df, this_signatures_ind_df,
           this_subgroups_df, column_name, refGenome,
           cohort_method_flag = "all_PIDs",
           in_strata_order_ind=seq_len(length(unique(my_table[,column_name]))),
           wordLength = 3,verbose_flag = 1,
           target_dir = NULL, strata_dir = NULL, output_path = NULL,
           in_all_exposures_df=NULL, in_rownames = c(), in_norms = NULL,
           in_label_orientation="turn", this_sum_ind=NULL) {
  refGenome_Seqinfo <- seqinfo(refGenome)
  if (verbose_flag==1) cat("\nYAPSA:::run_SMC::calling ",
                           "create_mutation_catalogue_from_df...\n")
  merged_results_list <- 
    create_mutation_catalogue_from_df(my_table, refGenome_Seqinfo,
                                      this_seqnames.field="CHROM",
                                      this_start.field="POS",
                                      this_end.field="POS",
                                      this_PID.field="PID",
                                      this_subgroup.field="subgroup",
                                      this_rownames = in_rownames,
                                      refGenome,wordLength,verbose_flag)
  temp_rownames <- rownames(merged_results_list$matrix)
  if (verbose_flag==1) cat("YAPSA:::run_SMC::calling ",
                           "stratify_and_create_mutational_catalogue...\n")
  all_list <- 
    stratify_and_create_mutational_catalogue(my_table,column_name,target_dir,
                                             strata_dir, refGenome_Seqinfo,
                                             our_seqnames.field="CHROM",
                                             our_start.field="POS",
                                             our_end.field="POS",
                                             our_PID.field="PID",
                                             our_subgroup.field="subgroup",
                                             refGenome,wordLength,verbose_flag,
                                             temp_rownames)
  name_list <- all_list$name_list
  df_list <- 
    adjust_number_of_columns_in_list_of_catalogues(all_list,
                                                   merged_results_list)
  mutation_catalogue_all_df <- as.data.frame(merged_results_list$matrix)
  ## adjust for trinucleotide content if necessary
  if(!is.null(in_norms)) {
    if (verbose_flag==1) cat("\nYAPSA:::run_SMC::adapting to different kmer ",
                             "distribution by calling ",
                             "normalizeMotifs_otherRownames...\n")
    df_list <- lapply(df_list, 
                      function(l) normalizeMotifs_otherRownames(l,in_norms))
    mutation_catalogue_all_df <- 
      normalizeMotifs_otherRownames(mutation_catalogue_all_df,in_norms)
  }
  number_of_strata <- length(df_list)
  number_of_sigs <- dim(this_signatures_df)[2]
  if (verbose_flag==1) cat("\nYAPSA:::run_SMC::calling SMC...\n")
  SMC_list <- SMC(df_list, this_signatures_df, in_all_exposures_df,
                  number_of_strata, number_of_sigs, name_list,
                  this_subgroups_df, mutation_catalogue_all_df,
                  cohort_method_flag, in_verbose=verbose_flag)
  exposures_strata_list <- SMC_list$exposures_strata_list
  exposures_both_rel_df_list <- SMC_list$exposures_both_rel_df_list
  this_subgroups_df <- SMC_list$this_subgroups_df
  decomposition_method <- SMC_list$decomposition_method
  ## plot
  if (verbose_flag==1) {cat("YAPSA:::run_SMC::calling plot_SMC...\n");}
  my_plot_list <- plot_SMC(number_of_strata,output_path,decomposition_method,
                           number_of_sigs,name_list,exposures_strata_list,
                           this_signatures_ind_df,this_subgroups_df,
                           in_strata_order_ind,exposures_both_rel_df_list,
                           cohort_method_flag,
                           in_label_orientation=in_label_orientation,
                           this_sum_ind=this_sum_ind)
  return(list(exposures_list=exposures_strata_list,catalogues_list=df_list,
              cohort=exposures_both_rel_df_list,name_list=name_list))
}


#'Stratification of a Mutational Catalogue
#'
#'\code{SMC} takes a given collection of stratified mutational catalogues
#'\code{Vi}, sends them to perform a mutational signatures decomposition by
#'Linear Combination Decomposition (LCD) with the functions
#'\code{\link{LCD_SMC}} with known signatures \code{W}. It subsequently performs
#'some useful statistics and preparation for plotting with the function
#'\code{\link{plot_SMC}}. \code{SMC} is naturally called by
#'\code{\link{run_SMC}}.
#'
#'@param df_list A list of \code{s} stratified mutational catalogues \code{Vi}
#'  \(numeric data frames\) with \code{n} rows and \code{m} columns each,
#'  \code{n} being the number of features and \code{m} being the number of
#'  samples.This list is naturally provided in \code{\link{run_SMC}}.
#'@param this_signatures_df A numeric data frame \code{W} in with \code{n} rows
#'  and \code{l} columns, \code{n} being the number of features and \code{l}
#'  being the number of signatures
#'@param in_all_exposures_df The overall exposures \code{H} without
#'  stratification, a numeric data frame with \code{l} rows and \code{m}
#'  columns, \code{l} being the number of signatures and \code{m} being the
#'  number of samples
#'@param number_of_strata The length of the list \code{df_list}
#'@param number_of_sigs The number of signatures used in the current
#'  decomposition.
#'@param name_list A list of names of the different strata
#'@param this_subgroups_df A data frame indicating which PID (patient or sample
#'  identifyier) belongs to which subgroup
#'@param mutation_catalogue_all_df The overall mutational catalogue \code{V}
#'  without stratification.
#'@param cohort_method_flag Either or several of
#'  \code{c("all_PIDs","cohort","norm_PIDs")}, representing alternative ways to
#'  average over the cohort.
#'@param in_verbose Verbose if \code{in_verbose=1}
#'
#'@return A list with entries \code{exposures_strata_list},
#'  \code{exposures_both_rel_df_list}, \code{this_subgroups_df},
#'  \code{subgroup_ind} and \code{decomposition_method}. \itemize{ \item
#'  \code{exposures_strata_list}: The list of \code{s} strata specific exposures
#'  Hi, all are numerical data frames with \code{l} rows and \code{m} columns,
#'  \code{l} being the number of signatures and \code{m} being the number of
#'  samples \item \code{exposures_both_rel_df_list}: A list of \code{s} strata
#'  specific cohortwide (i.e. averaged over cohort) normalized exposures \item
#'  \code{this_subgroups_df}: \code{subgroups_df} adjusted for plotting \item
#'  \code{subgroup_ind}: Index of the subgroups chosen and relevant for
#'  plotting. \item \code{decomposition_method}: String telling whether LCD or
#'  NMF was used, relevant only for handing over to \code{\link{plot_SMC}}. }
#'
#' @examples
#' NULL
#'
#'@seealso \code{\link{run_SMC}}
#'@seealso \code{\link{plot_SMC}}
#'@seealso \code{\link{LCD_SMC}}
#'
#'@import reshape2
#'@export
#'
SMC <- function(df_list, this_signatures_df, in_all_exposures_df,
                number_of_strata,number_of_sigs, name_list, this_subgroups_df,
                mutation_catalogue_all_df, cohort_method_flag, in_verbose=1){
  ## this is the LCD_SMC procedure
  if (in_verbose==1) cat("YAPSA:::SMC::calling LCD_SMC on per-PID data...\n")
  exposures_strata_list <- 
    LCD_SMC(df_list,this_signatures_df,in_all_exposures_df)
  exposures_all_df <- exposures_strata_list$exposures_all_df
  
  sum_over_exposures_all_per_pid <- apply(exposures_all_df,2,sum)
  sum_df <- data.frame(sum = sum_over_exposures_all_per_pid,
                       PID = colnames(exposures_all_df))
  ## make cohort-wide statistics
  ## 1. compute exposures in cohort as sum over PIDs
  mean_over_exposures_all_per_sig <- apply(exposures_all_df,1,mean)
  stderrmean_over_exposures_all_per_sig <- apply(exposures_all_df,1,stderrmean)
  exposures_all_PIDs_df <- 
    data.frame(all_abs = mean_over_exposures_all_per_sig,
               all_stderrmean = stderrmean_over_exposures_all_per_sig)
  temp_denominator <- sum(exposures_all_PIDs_df$all_abs)
  exposures_all_PIDs_df$all_rel <- 
    exposures_all_PIDs_df$all_abs /temp_denominator
  exposures_all_PIDs_df$all_rstderrmean <- 
    exposures_all_PIDs_df$all_stderrmean / temp_denominator
  for (i in seq_len(number_of_strata)){
    my_index <- 4*(i)+1
    temp_exposures_df <- exposures_strata_list$sub_exposures_list[[i]]
    exposures_all_PIDs_df[,my_index] <- apply(temp_exposures_df, 1, mean)
    exposures_all_PIDs_df[,my_index+1] <- 
      apply(temp_exposures_df, 1, stderrmean)
    temp_denominator <- sum(exposures_all_PIDs_df[,my_index])
    exposures_all_PIDs_df[,my_index+2] <- 
      exposures_all_PIDs_df[,my_index] / temp_denominator
    exposures_all_PIDs_df[,my_index+3] <- 
      exposures_all_PIDs_df[,my_index+1] / temp_denominator
    names(exposures_all_PIDs_df)[my_index] <- paste0(name_list[[i]] ,"_abs")
    names(exposures_all_PIDs_df)[my_index+1] <- paste0(name_list[[i]],
                                                       "_stderrmean")
    names(exposures_all_PIDs_df)[my_index+2] <- paste0(name_list[[i]], "_rel")
    names(exposures_all_PIDs_df)[my_index+3] <- paste0(name_list[[i]],
                                                       "_rstderrmean")
  }
  exposures_all_PIDs_df$sig <- rownames(exposures_all_PIDs_df)
  exposures_all_PIDs_df$method <- "all_PIDs"
  ## 2. compute exposures in cohort by running decomposition on a fused vector
  if (in_verbose==1) cat("YAPSA:::SMC::compute exposures in cohort by ",
                         "running decomposition on a fused vector...\n")
  catalogue_in_cohort_all <- apply(mutation_catalogue_all_df,1,sum)
  catalogue_in_cohort_df <- data.frame(all_abs=catalogue_in_cohort_all)
  catalogue_in_cohort_df$all_rel <- 
    catalogue_in_cohort_df$all_abs / sum(catalogue_in_cohort_df$all_abs)
  catalogue_in_cohort_df_list <- list()
  for (i in seq_len(number_of_strata)) {
    my_index <- 2*(i)+1
    temp_catalogue_df <- df_list[[i]]
    catalogue_in_cohort_df[,my_index] <- apply(temp_catalogue_df,1,sum)
    catalogue_in_cohort_df[,my_index+1] <- 
      catalogue_in_cohort_df[,my_index] / 
      sum(catalogue_in_cohort_df[,my_index])
    names(catalogue_in_cohort_df)[my_index] <- paste0(name_list[[i]], "_abs")
    names(catalogue_in_cohort_df)[my_index+1] <- paste0(name_list[[i]], "_rel")
    catalogue_in_cohort_df_list[[i]] <- 
      data.frame(all_abs = catalogue_in_cohort_df[,my_index])
  }
  catalogue_in_cohort_in_exposures <- NULL
  decomposition_method <- "LCD"
  if (!is.null(in_all_exposures_df)) {
    temp_vector <- apply(in_all_exposures_df, 1, sum)
    catalogue_in_cohort_in_exposures <- data.frame(all_abs = temp_vector)
    decomposition_method <- "NMF"
  }
  if (in_verbose==1) cat("YAPSA:::SMC::calling LCD_SMC ",
                         "on cohort-wide data...\n")
  exposures_in_cohort_strata_list <- LCD_SMC(catalogue_in_cohort_df_list,
                                             this_signatures_df,
                                             catalogue_in_cohort_in_exposures)
  temp_dim <- dim(exposures_in_cohort_strata_list$exposures_all_df)[1]
  exposures_in_cohort_df <- 
    data.frame(all_abs = exposures_in_cohort_strata_list$exposures_all_df,
               all_stderrmean = rep(0,temp_dim))
  exposures_in_cohort_df$all_rel <- exposures_in_cohort_df$all_abs / 
    sum(exposures_in_cohort_df$all_abs)
  exposures_in_cohort_df$all_rstderrmean <- 
    rep(0,dim(exposures_in_cohort_strata_list$exposures_all_df)[1])
  for (i in seq_len(number_of_strata)) {
    my_index <- 4*(i)+1
    temp_exposures_df <- 
      exposures_in_cohort_strata_list$sub_exposures_list[[i]]
    exposures_in_cohort_df[,my_index] <- temp_exposures_df$all_abs
    exposures_in_cohort_df[,my_index+1] <- 0
    exposures_in_cohort_df[,my_index+2] <- exposures_in_cohort_df[,my_index] / 
      sum(exposures_in_cohort_df[,my_index])
    exposures_in_cohort_df[,my_index+3] <- 0
    names(exposures_in_cohort_df)[my_index] <- paste0(name_list[[i]], "_abs")
    names(exposures_in_cohort_df)[my_index+1] <- paste0(name_list[[i]],
                                                        "_stderrmean")
    names(exposures_in_cohort_df)[my_index+2] <- paste0(name_list[[i]], "_rel")
    names(exposures_in_cohort_df)[my_index+3] <- paste0(name_list[[i]],
                                                        "_rstderrmean")
  }
  exposures_in_cohort_df$sig <- rownames(exposures_in_cohort_df)
  exposures_in_cohort_df$method <- "cohort"
  ## 3. average over relative exposures
  ## 3.a) compute relative exposures
  exposures_strata_list$norm_exposures_all_df <- 
    normalize_df_per_dim(exposures_strata_list$exposures_all_df,2)
  exposures_strata_list$sub_norm_exposures_list <- 
    lapply(exposures_strata_list$sub_exposures_list,
           function(l) normalize_df_per_dim(l,2))
  ## 3.b) average and build data structure
  mean_over_norm_exposures_all_per_sig <- 
    apply(exposures_strata_list$norm_exposures_all_df, 1, mean)
  stderrmean_over_norm_exposures_all_per_sig <- 
    apply(exposures_strata_list$norm_exposures_all_df, 1, stderrmean)
  norm_exposures_all_PIDs_df <- 
    data.frame(all_abs = rep(0,length(mean_over_norm_exposures_all_per_sig)),
               all_stderrmean = rep(0,length(
                 mean_over_norm_exposures_all_per_sig)),
               all_rel=mean_over_norm_exposures_all_per_sig,
               all_rstderrmean=stderrmean_over_norm_exposures_all_per_sig)
  temp_list <- lapply(exposures_strata_list$sub_norm_exposures_list,
                      function(l) apply(l,1,mean))
  for (i in seq_len(number_of_strata)) {
    my_index <- 4*(i)+1
    norm_exposures_all_PIDs_df[,my_index] <- 0
    norm_exposures_all_PIDs_df[,my_index+1] <- 0
    temp_vec <- average_over_present(
      exposures_strata_list$sub_norm_exposures_list[[i]], 1)
    if(!is.null(temp_vec)) {
      norm_exposures_all_PIDs_df[,my_index+2] <- temp_vec
    } else {
      norm_exposures_all_PIDs_df[,my_index+2] <- 0
    }
    temp_vec <- stderrmean_over_present(
      exposures_strata_list$sub_norm_exposures_list[[i]], 1)
    if(!is.null(temp_vec)) {
      norm_exposures_all_PIDs_df[,my_index+3] <- temp_vec
    } else {
      norm_exposures_all_PIDs_df[,my_index+3] <- 0
    }
    names(norm_exposures_all_PIDs_df)[my_index] <- paste0(name_list[[i]],
                                                          "_abs")
    names(norm_exposures_all_PIDs_df)[my_index+1] <- paste0(name_list[[i]],
                                                            "_stderrmean")
    names(norm_exposures_all_PIDs_df)[my_index+2] <- paste0(name_list[[i]],
                                                            "_rel")
    names(norm_exposures_all_PIDs_df)[my_index+3] <- paste0(name_list[[i]],
                                                            "_rstderrmean")
  }
  norm_exposures_all_PIDs_df$sig <- rownames(exposures_all_PIDs_df)
  norm_exposures_all_PIDs_df$method <- "norm_PIDs"
  ## 4 unite the 3 different methods into one dataframe
  exposures_combMethod_df <- 
    rbind(exposures_all_PIDs_df, 
          exposures_in_cohort_df, 
          norm_exposures_all_PIDs_df)
  abs_ind <- grep(".*_abs|^sig$|^method$", names(exposures_combMethod_df))
  rel_ind <- grep(".*_rel|^sig$|^method$", names(exposures_combMethod_df))
  rstderrmean_ind <- grep(".*_rstderrmean|^sig$|^method$",
                          names(exposures_combMethod_df))
  exposures_combMethod_abs_df <- exposures_combMethod_df[,abs_ind]
  exposures_combMethod_rel_df <- exposures_combMethod_df[,rel_ind]
  exposures_combMethod_rstderrmean_df <- 
    exposures_combMethod_df[,rstderrmean_ind]
  ## prepare for plotting
  if (in_verbose==1) {cat("YAPSA:::SMC::prepare for plotting...\n");}
  exposures_combMethod_rel_melt_df <- 
    melt(exposures_combMethod_rel_df, id.vars=c("sig","method"), 
         value.name="exposure")
  exposures_combMethod_rstderrmean_melt_df <- 
    melt(exposures_combMethod_rstderrmean_df, id.vars=c("sig","method"),
         value.name="exposure_rstderrmean")
  exposures_combMethod_rel_melt_df$rstderrmean <- 
    exposures_combMethod_rstderrmean_melt_df$exposure_rstderrmean
  exposures_combMethod_rel_melt_df$exposure_min <- 
    exposures_combMethod_rel_melt_df$exposure - 
    exposures_combMethod_rstderrmean_melt_df$exposure_rstderrmean
  exposures_combMethod_rel_melt_df$exposure_max <- 
    exposures_combMethod_rel_melt_df$exposure + 
    exposures_combMethod_rstderrmean_melt_df$exposure_rstderrmean
  counter <- 0
  exposures_combMethod_rel_df_list <- list()
  exposures_combMethod_rstderrmean_df_list <- list()
  method_choice_ind <- 
    which(exposures_combMethod_rel_melt_df$method %in% cohort_method_flag)
  exposures_combMethod_rel_melt_df <- 
    exposures_combMethod_rel_melt_df[method_choice_ind,]
  for (temp_varname in unique(exposures_combMethod_rel_melt_df$variable)) {
    counter <- counter + 1
    temp_ind <- which(exposures_combMethod_rel_melt_df$variable==temp_varname)
    exposures_combMethod_rel_df_list[[counter]] <- 
      exposures_combMethod_rel_melt_df[temp_ind,]
    exposures_combMethod_rel_df_list[[counter]]$sig <- 
      factor(exposures_combMethod_rel_df_list[[counter]]$sig,
             levels=unique(exposures_combMethod_rel_df_list[[counter]]$sig))
  }  
  ## adapt subgroups data structure
  if(dim(mutation_catalogue_all_df)[2]==dim(this_subgroups_df)[1]) {
    this_subgroups_df$PID <- colnames(mutation_catalogue_all_df)
    this_subgroups_df$sum <- sum_df$sum
    max_total_count <- max(this_subgroups_df$sum)
    this_subgroups_df$compl_sum <- max_total_count - this_subgroups_df$sum
    subgroup_ind <- 
      order(this_subgroups_df$subgroup, this_subgroups_df$compl_sum)
    this_subgroups_df$index <- order(subgroup_ind)
  } else {
    cat("YAPSA:::SMC::Warning: dimension mismatch between ",
        "mutation_catalogue_df and subgroup_df.\n")
    q(status=5)
  }
  return(list(exposures_strata_list=exposures_strata_list,
              exposures_both_rel_df_list=exposures_combMethod_rel_df_list,
              this_subgroups_df=this_subgroups_df,
              subgroup_ind=subgroup_ind,
              decomposition_method=decomposition_method))
}


#' Apply statistical tests to a stratification (SMC)
#'
#' \code{stat_test_SMC} tests for enrichment or depletion in the different
#' strata of a stratification of the mutational catalogue for every signature
#' independently by applying Kruskal Wallis tests. For those signatures where
#' the Kruskal Wallis test gives a significant p-value, pairwise posthoc tests
#' are carried out by calling \code{\link[PMCMR]{posthoc.kruskal.nemenyi.test}}.
#' Additionally all data is tested for normality by Shapiro Wilk tests, so that
#' the user may apply ANOVA and pairwise posthoc t-test where allowed.
#'
#' @param in_strat_list A list with entries \code{exposures_list},
#'   \code{catalogues_list}, \code{cohort} and \code{name_list} as in the output
#'   of \code{\link{run_SMC}}. \itemize{ \item \code{exposures_list}: The list
#'   of \code{s} strata specific exposures Hi, all are numerical data frames
#'   with \code{l} rows and \code{m} columns, \code{l} being the number of
#'   signatures and \code{m} being the number of samples \item
#'   \code{catalogues_list}: A list of \code{s} strata specific cohortwide (i.e.
#'   averaged over cohort) normalized exposures \item \code{cohort}:
#'   \code{subgroups_df} adjusted for plotting \item \code{name_list}: Names of
#'   the contructed strata. }
#' @param in_flag If "norm", all tests are performed on normalized exposures,
#'   otherwise the absolute exposures are taken.
#'
#' @return A list with entries \code{kruskal_df}, \code{shapiro_df},
#'   \code{kruskal_posthoc_list}, \itemize{ \item \code{kruskal_df}: A data
#'   frame containing results (statistic and p values) of the Kruskal Wallis
#'   tests (tests for enrichment or depletion in the different strata for every
#'   signature independently). \item \code{shapiro_df}: A data frame containing
#'   results (p values) of the Shapiro Wilk tests (tests for normal distribution
#'   in the different strata for every signature independently). \item
#'   \code{kruskal_posthoc_list}: A list of results of pairwise posthoc tests
#'   carried out for those signatures where the Kruskal Wallis test yielded a
#'   significant p-value (carried out by
#'   \code{\link[PMCMR]{posthoc.kruskal.nemenyi.test}}). }
#'
#' @examples
#'  NULL
#'
#' @seealso \code{\link{run_SMC}}
#' @seealso \code{\link[PMCMR]{posthoc.kruskal.nemenyi.test}}
#' @seealso \code{\link[stats]{kruskal.test}}
#' @seealso \code{\link{shapiro_if_possible}}
#' @seealso \code{\link[stats]{shapiro.test}}
#'
#' @import PMCMR
#' @export
#' 
stat_test_SMC <- function(in_strat_list,in_flag="norm"){
  my_number_of_strata <- 
    length(in_strat_list$exposures_list$sub_norm_exposures_list)
  my_signatures <- 
    rownames(in_strat_list$exposures_list$sub_norm_exposures_list[[1]])
  my_number_of_signatures <- 
    dim(in_strat_list$exposures_list$sub_norm_exposures_list[[1]])[1]
  my_number_of_PIDs <- 
    dim(in_strat_list$exposures_list$sub_norm_exposures_list[[1]])[2]
  out_stat_df <- repeat_df(NA,my_number_of_signatures,3)
  shapiro_df <- repeat_df(NA,my_number_of_signatures,my_number_of_strata)
  rownames(out_stat_df) <- my_signatures
  rownames(shapiro_df) <- my_signatures
  names(out_stat_df) <- c("Kruskal_statistic","df","Kruskal_p_val")
  posthoc_list <- list()
  for(temp_sig in my_signatures){
    sig_exposures_vector <- c()
    sig_strata_vector <- c()
    for(j in seq_len(my_number_of_strata)){
      if(in_flag=="norm"){
        temp_df <- in_strat_list$exposures_list$sub_norm_exposures_list[[j]]
      } else {
        temp_df <- in_strat_list$exposures_list$sub_exposures_list[[j]]
      }
      PID_choice_ind <- which(colSums(temp_df)>0)
      temp_exposures_vector <- as.numeric(temp_df[temp_sig,PID_choice_ind])
      sig_exposures_vector <- c(sig_exposures_vector,temp_exposures_vector)
      sig_strata_vector <- c(sig_strata_vector,
          rep(in_strat_list$name_list[[j]],length(temp_exposures_vector)))
      ## catch exception for temp_exposures_vector being all equal values 
      ## (all zero)
      shapiro_df[temp_sig,j] <- shapiro_if_possible(temp_exposures_vector)
    }
    sig_strata_vector <- factor(sig_strata_vector)
    sig_kruskal <- kruskal.test(sig_exposures_vector,sig_strata_vector)
    posthoc_list[[temp_sig]] <- 
      posthoc.kruskal.nemenyi.test(x=sig_exposures_vector,g=sig_strata_vector)
    out_stat_df[temp_sig,1] <- sig_kruskal$statistic
    out_stat_df[temp_sig,2] <- sig_kruskal$parameter
    out_stat_df[temp_sig,3] <- sig_kruskal$p.value
  }
  out_stat_df$Kruskal_p_val_BH <- p.adjust(out_stat_df$Kruskal_p_val, 
                                           method="BH")
  return(list(kruskal_df=out_stat_df,shapiro_df = shapiro_df,
              kruskal_posthoc_list = posthoc_list))
}


#' Test for differences in average signature exposures between subgroups
#'
#' Apply Kruskal-Wallis tests to detect differences in the signature exposures
#' between different subgroups. Uses \code{\link{split_exposures_by_subgroups}}.
#' Algorithm analogous to \code{\link{stat_test_SMC}}.
#'
#' @param in_exposures_df Numerical data frame of the exposures (i.e.
#'   contributions of the different signatures to the number of point mutations
#'   per PID)
#' @param in_subgroups_df Data frame indicating which PID belongs to which
#'   subgroup
#' @param in_subgroups.field Name indicating which column in
#'   \code{in_subgroups_df} contains the subgroup information
#' @param in_PID.field Name indicating which column in \code{in_subgroups_df}
#'   contains the PID information
#'
#' @return A list with entries \code{kruskal_df}, \code{kruskal_posthoc_list},
#'   \itemize{ \item \code{kruskal_df}: A data frame containing results
#'   (statistic and p values) of the Kruskal Wallis tests (tests for enrichment
#'   or depletion in the different strata for every signature independently).
#'   \item \code{kruskal_posthoc_list}: A list of results of pairwise posthoc
#'   tests carried out for those signatures where the Kruskal Wallis test
#'   yielded a significant p-value (carried out by
#'   \code{\link[PMCMR]{posthoc.kruskal.nemenyi.test}}). }
#'
#' @seealso \code{\link{split_exposures_by_subgroups}}
#' @seealso \code{\link{stat_test_SMC}}
#' @seealso \code{\link[PMCMR]{posthoc.kruskal.nemenyi.test}}
#' @seealso \code{\link[stats]{kruskal.test}}
#'
#' @examples
#'  NULL
#'
#' @export
#' 
stat_test_subgroups <- function(in_exposures_df,in_subgroups_df,
                                in_subgroups.field="subgroup",
                                in_PID.field="PID"){
  # split the data with custom function
  exposures_df_list <- split_exposures_by_subgroups(
    in_exposures_df=in_exposures_df,in_subgroups_df=in_subgroups_df,
    in_subgroups.field=in_subgroups.field,
    in_PID.field=in_PID.field)
  number_of_subgroups <- length(exposures_df_list)
  my_signatures <- rownames(in_exposures_df)
  number_of_signatures <- length(my_signatures)
  out_stat_df <- repeat_df(NA,number_of_signatures,3)
  shapiro_df <- repeat_df(NA,number_of_signatures,number_of_subgroups)
  rownames(out_stat_df) <- my_signatures
  rownames(shapiro_df) <- my_signatures
  names(out_stat_df) <- c("Kruskal_statistic","df","Kruskal_p_val")
  posthoc_list <- list()
  for(temp_sig in my_signatures){
    sig_exposures_vector <- c()
    sig_subgroups_vector <- c()
    for(j in seq_len(number_of_subgroups)){
      temp_exposures_vector <- as.numeric(exposures_df_list[[j]][temp_sig,])
      sig_exposures_vector <- c(sig_exposures_vector,temp_exposures_vector)
      sig_subgroups_vector <- c(sig_subgroups_vector,
                             rep(names(exposures_df_list)[j],
                                 length(temp_exposures_vector)))
    }
    sig_subgroups_vector <- factor(sig_subgroups_vector)
    sig_kruskal <- kruskal.test(sig_exposures_vector,sig_subgroups_vector)
    posthoc_list[[temp_sig]] <- 
      posthoc.kruskal.nemenyi.test(x = sig_exposures_vector,
                                   g = sig_subgroups_vector)
    out_stat_df[temp_sig,1] <- sig_kruskal$statistic
    out_stat_df[temp_sig,2] <- sig_kruskal$parameter
    out_stat_df[temp_sig,3] <- sig_kruskal$p.value
  }
  out_stat_df$Kruskal_p_val_BH <- p.adjust(out_stat_df$Kruskal_p_val, 
                                           method="BH")
  return(list(kruskal_df = out_stat_df,shapiro_df=shapiro_df,
              kruskal_posthoc_list = posthoc_list))
}


#' Run SMC at a per sample level
#'
#' Run an SMC analysis (stratification of the mutational catalogue) at per
#' sample / per-PID level, corresponding to a divide and conquer strategy. For
#' every single PID, only those signatures actually present in this PID will be
#' provided for the SMC analysis.
#'
#' @param in_dfList Named list of vcf-like data frames, one entry per sample/PID
#'   of a cohort.
#' @param in_LCDlist Output of an LCD list perfomed on the above cohort,
#'   carrying notably information on the exposures
#'   (\code{in_LCDlist$exposures}), the present signatures
#'   (\code{in_LCDlist$signatures}) and meta information about the
#'   signatures(\code{in_LCDlist$out_sig_ind_df}).
#' @param in_subgroups_df Data frame with subgroup information about the PIDs in
#'   the above mentioned cohort.
#' @param in_save_plot Boolean flag to indicate whether per-PID plots should be
#'   saved.
#' @param in_save_dir If per-PID plots are to be saved, this is the path where
#'   to save them.
#' @param in_save_name Suffix to be appended to the sample name to generate the
#'   name of the saved per-PID plots.
#' @param in_verbose_flag Whether to run verbose (1) or not (0).
#' @param ... Data passed on to \code{\link{run_SMC}}.
#'
#' @return A list of lists. The top level is a named per-PID list, each entry is
#'   of type SMClist (cf. \code{\link{run_SMC}}).
#'
#' @export
#'
#' @examples
#'  NULL
#'  
SMC_perPID <- function (in_dfList,
                        in_LCDlist,
                        in_subgroups_df,
                        in_save_plot = TRUE,
                        in_save_dir = NULL,
                        in_save_name = "KataegisSMCs.pdf",
                        in_verbose_flag = 0,
                        ...) {
  out_listsList <- 
    lapply(names(in_dfList), function(current_PID){
      if(in_verbose_flag == 1) cat("\nCurrent PID: ", current_PID, "\n")
      current_vcf_like_df <- in_dfList[[current_PID]]
      temp_sig_ind <- which(in_LCDlist$exposures[, current_PID] > 0)
      current_sig_df <- in_LCDlist$signatures[, temp_sig_ind, drop = FALSE]
      current_sigInd_df <- 
        in_LCDlist$out_sig_ind_df[temp_sig_ind, , drop = FALSE]
      current_all_exposures_df <- 
        in_LCDlist$exposures[temp_sig_ind, current_PID, drop = FALSE]
      current_subgroups_subdf <- 
        in_subgroups_df[which(in_subgroups_df$PID == current_PID),]
      currentNumberOfStrata <- length(unique(current_vcf_like_df$Kataegis))
      if(in_save_plot & !is.null(in_save_dir)){
        fileName <- file.path(in_save_dir, 
                              paste0(current_PID, "_", in_save_name))
        pdf(fileName, width = 6, height = currentNumberOfStrata + 1)
        temp_SMClist <- run_SMC(
          my_table = current_vcf_like_df,
          this_signatures_df = current_sig_df,
          this_signatures_ind_df = current_sigInd_df,
          this_subgroups_df = current_subgroups_subdf,
          verbose_flag = in_verbose_flag,
          in_all_exposures_df = current_all_exposures_df,
          ...)
        dev.off()
      } else {
        temp_SMClist <- run_SMC(
          my_table = current_vcf_like_df,
          this_signatures_df = current_sig_df,
          this_signatures_ind_df = current_sigInd_df,
          this_subgroups_df = current_subgroups_subdf,
          verbose_flag = in_verbose_flag,
          in_all_exposures_df = current_all_exposures_df,
          ...)
      }
      temp_names <- 
        unlist(lapply(temp_SMClist$cohort, function(current_df){
          return(current_df$variable[1])
        }))
      names(temp_SMClist$cohort) <- gsub("_rel", "", temp_names)
      return(temp_SMClist)
    })
  names(out_listsList) <- names(in_dfList)
  return(out_listsList)
}
slw287r/yapsa documentation built on June 7, 2020, 12:46 a.m.