library(zeallot)
test_that("Establish genes clusters", {
data("test.dataset")
objCOTAN <- COTAN(raw = test.dataset)
objCOTAN <- proceedToCoex(objCOTAN, cores = 6L,
optimizeForSpeed = FALSE, saveObj = FALSE)
c(secondaryMarkers, GCS, rankGenes) %<-%
genesCoexSpace(objCOTAN = objCOTAN,
primaryMarkers = c("g-000300"),
numGenesPerMarker = 5L)
expect_gt(length(secondaryMarkers), 1L)
expect_equal(colnames(rankGenes), c("g-000300"), ignore_attr = TRUE)
expect_identical(rownames(rankGenes), secondaryMarkers)
expect_identical(colnames(GCS), secondaryMarkers)
expect_lte(max(abs(GCS)), 1L)
groupMarkers <- list(G1 = c("g-000010", "g-000020", "g-000030"),
G2 = c("g-000300", "g-000330"),
G3 = c("g-000510", "g-000530", "g-000550",
"g-000570", "g-000590"))
c(secondaryMarkers, GCS, rankGenes) %<-%
genesCoexSpace(objCOTAN = objCOTAN,
primaryMarkers = unlist(groupMarkers),
numGenesPerMarker = 11L)
expect_gt(length(secondaryMarkers), length(unlist(groupMarkers)))
expect_equal(colnames(rankGenes), unlist(groupMarkers), ignore_attr = TRUE)
expect_identical(rownames(rankGenes), secondaryMarkers)
expect_identical(colnames(GCS), secondaryMarkers)
expect_lte(max(abs(GCS)), 1L)
if (TRUE) {
GCS_old <- as.matrix(readRDS(file.path(getwd(), "genes.coex.space.RDS")))
expect_equal(GCS, GCS_old, tolerance = 1.0e-8)
}
c(gSpace, plotEigen, pcaClusters, treePlot) %<-%
establishGenesClusters(objCOTAN = objCOTAN,
groupMarkers = groupMarkers,
numGenesPerMarker = 11L,
kCuts = 6L,
distance = "cosine",
hclustMethod = "ward.D2")
pcaExtraCols <- c("highlight", "hclust", "sec_markers",
"colors", "col_branches", "groupLabels")
expect_s3_class(pcaClusters, "data.frame")
expect_identical(ncol(pcaClusters), 16L)
expect_identical(colnames(pcaClusters),
c(paste0("PC", (1L:10L)), pcaExtraCols))
if (TRUE) {
pcaClustersExp <- readRDS(file.path(getwd(), "pca.clusters.RDS"))
expect_identical(dim(pcaClusters), dim(pcaClustersExp))
expect_identical(colnames(pcaClusters), colnames(pcaClustersExp))
expect_identical(rownames(pcaClusters), rownames(pcaClustersExp))
expect_identical(ncol(pcaClusters), 16L)
expect_equal(abs(pcaClusters[, 1L:4L]),
abs(pcaClustersExp[, 1L:4L]), tolerance = 5.0e-7)
expect_equal(abs(pcaClusters[, 5L:7L]),
abs(pcaClustersExp[, 5L:7L]), tolerance = 5.0e-7)
expect_equal(abs(pcaClusters[, 8L:9L]),
abs(pcaClustersExp[, 8L:9L]), tolerance = 5.0e-5)
expect_equal(abs(pcaClusters[, 10L]),
abs(pcaClustersExp[, 10L]), tolerance = 5.0e-4)
expect_identical(pcaClusters[, 11L:13L], pcaClustersExp[, 11L:13L])
expect_identical(pcaClusters[, 16L], pcaClustersExp[, 16L])
}
expect_identical(nrow(gSpace), nrow(pcaClusters))
expect_identical(GCS, gSpace)
expect_s3_class(plotEigen, "ggplot")
expect_identical(dim(plotEigen[["data"]]), c(10L, 2L))
expect_s3_class(treePlot, "dendrogram")
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.