#' @details `mitochondrialPercentagePlot()` plots the raw library size for each
#' cell and sample.
#'
#' @param objCOTAN a `COTAN` object
#' @param genePrefix Prefix for the mitochondrial genes (default "^MT-" for
#' Human, mouse "^mt-")
#' @param condName The name of a condition in the `COTAN` object to further
#' separate the cells in more sub-groups. When no condition is given it is
#' assumed to be the same for all cells (no further sub-divisions)
#' @param conditions The *conditions* to use. If given it will take precedence
#' on the one indicated by `condName` that will only indicate the relevant
#' column name in the returned `data.frame`
#'
#' @importFrom ggplot2 ggplot
#' @importFrom ggplot2 geom_point
#' @importFrom ggplot2 position_jitter
#' @importFrom ggplot2 geom_boxplot
#' @importFrom ggplot2 labs
#' @importFrom ggplot2 scale_y_continuous
#' @importFrom ggplot2 ylim
#'
#' @importFrom Matrix rowSums
#'
#' @importFrom rlang is_empty
#'
#' @importFrom stringr str_detect
#'
#' @returns `mitochondrialPercentagePlot()` returns a `list` with:
#' * `"plot"` a `violin-boxplot` object
#' * `"sizes"` a sizes `data.frame`
#'
#' @export
#'
#' @examples
#' mitPercPlot <-
#' mitochondrialPercentagePlot(objCOTAN, genePrefix = "g-0000")[["plot"]]
#' plot(mitPercPlot)
#'
#' @rdname RawDataCleaning
#'
mitochondrialPercentagePlot <- function(objCOTAN, genePrefix = "^MT-",
condName = "", conditions = NULL) {
sizes <- getCellsSize(objCOTAN)
sizes <- as.data.frame(sizes)
sizes <- setColumnInDF(sizes, seq_len(nrow(sizes)), colName = "n")
c(., conditions) %<-%
normalizeNameAndLabels(objCOTAN, name = condName,
labels = conditions, isCond = TRUE)
assert_that(!is_empty(conditions))
sizes <- setColumnInDF(sizes, conditions[rownames(sizes)], colName = "sample")
mitGenes <- getGenes(objCOTAN)[str_detect(getGenes(objCOTAN),
pattern = genePrefix)]
if (is_empty(mitGenes)) {
stop("gene prefix resulted in no matches")
}
mitGenesData <-
getRawData(objCOTAN)[getGenes(objCOTAN) %in% mitGenes, , drop = FALSE]
if (!identical(colnames(mitGenesData), rownames(sizes))) {
warning("Problem with cells' order!")
}
mitGenesData <- t(mitGenesData)
sizes <- setColumnInDF(sizes, rowSums(mitGenesData), colName = "sum.mit")
sizes <- setColumnInDF(sizes, colName = "mit.percentage",
colToSet = round(100.0 * sizes[["sum.mit"]] /
sizes[["sizes"]], digits = 2L))
plot <-
sizes %>%
ggplot(aes(x = sample, y = mit.percentage, fill = sample)) +
#geom_point(size = 0.5) +
geom_flat_violin(position = position_nudge(x = 0.15, y = 0.0),
adjust = 2.0, alpha = 0.5) +
geom_point(position = position_jitter(width = 0.1),
size = 0.4, color = "black", alpha = 0.5) +
geom_boxplot(aes(x = sample, y = mit.percentage, fill = sample),
outlier.shape = NA, alpha = 0.8,
width = 0.15, colour = "gray65", size = 0.6) +
labs(title = "Mitochondrial percentage of reads",
y = "% (mit. reads / tot reads * 100)",
x = "") +
scale_y_continuous(expand = c(0.0, 0.0)) +
#ylim(0L, max(sizes[["sizes"]])) +
plotTheme("size-plot")
return(list("plot" = plot, "sizes" = sizes))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.