library(dplyr)
# helper to generate network
inter <- function(x1,i,x2){
data.frame(source = x1, interaction = i, target = x2)
}
# These helpers can be used to visualize PKN and results.
# They are not essential part of testing but will help identifying the issues
# if we need manual checking.
plotSolution <- function(result_actual,id,inputs, measurement){
net_edge <- result_actual$sifAll[[id]] %>% as_tibble() %>%
rename(from = Node1,to=Node2) %>%
mutate(color = ifelse(Sign == 1, "black","red"))
inp = names(inputs)
measured = names(measurement)
net_nodes <- result_actual$attributesAll[[id]] %>% as_tibble() %>%
rename(id = Nodes) %>%
mutate(label = id) %>%
mutate(color.border = ifelse(id %in% inp, "black","white"),
color.border = ifelse(id %in% measured,"red", color.border)) %>%
mutate(color.background = ifelse(Activity == 1,"#9acd32", "grey"),
color.background = ifelse(Activity == -1,"red", color.background)) %>%
mutate(borderWidth = 3)
visNetwork::visNetwork(edges = net_edge,nodes = net_nodes) %>%
visNetwork::visEdges(arrows = 'to', scaling = list(min = 2, max = 2)) %>%
visNetwork::visNodes(label=id,shape="ellipse")
}
plotPKN <- function(network, inputs, measurement){
net_edge <- network %>% as_tibble() %>%
rename(from = source,to=target) %>%
mutate(color = ifelse(interaction == 1, "black","red"))
nodes = unique(c(network$source, network$target))
inp = names(inputs)
measured = names(measurement)
net_nodes <- tibble(id = nodes, label = nodes) %>%
mutate(color.background = ifelse(id %in% inp, "#9acd32","white"),
color.background = ifelse(id %in% measured,"lightblue", color.background))
visNetwork::visNetwork(edges = net_edge,nodes = net_nodes) %>%
visNetwork::visEdges(arrows = 'to', scaling = list(min = 2, max = 2)) %>%
visNetwork::visNodes(label=id,shape="ellipse")
}
# Tests with LP solve ------------------------------------------------------
test_that("lpSolve, empty solution", {
# small chain model
inputs = data.frame(I1 = 1)
measurement = data.frame(M1 = -1)
network = rbind(inter("I1", 1, "N1"),
inter("I1", 1, "N2"),
inter("N2", 1, "M1"),
inter("N1", 1, "M1"))
# obtain actual result using LP solve
result_actual = runCARNIVAL(inputObj = inputs,
measObj = measurement,
netObj = network,
solver = "lpSolve",
timelimit = 60,
dir_name = "./test_model1/test1/",
threads = 1,
betaWeight = 0.1)
attr = result_actual$nodesAttributes
attr <- attr[match(attr$Node,c("I1","M1","N1","N2")),]
expect_equal(attr$AvgAct, c(100,0,0,0))
expect_equal(attr$DownAct, c(0,0,0,0))
expect_equal(attr$UpAct, c(100,0,0,0))
expect_equal(attr$ZeroAct, c(0,100,100,100))
# weightedSIF
expect_true(nrow(result_actual$weightedSIF)== 4)
expect_equal(result_actual$weightedSIF$Weight, c(0,0,0,0))
# sifAll
expect_length(result_actual$sifAll,1)
# attributesAll
expect_length(result_actual$attributesAll,1)
expect_true(result_actual$attributesAll[[1]]$Activity==1)
})
### Model 0: minimalist chain model with 3 solutions ---------------------------
# Only activatory edges
# Note: LP solve will find only 1.
# Formal checking the output of runCARNIVAL
test_that("lpSolve, diamond shape, positive edges", {
# small chain model
inputs = data.frame(I1 = 1)
measurement = data.frame(M1 = 1)
network = rbind(inter("I1", 1, "N1"),
inter("I1", 1, "N2"),
inter("N2", 1, "M1"),
inter("N1", 1, "M1"))
# obtain actual result using LP solve
result_actual = runCARNIVAL(inputObj = inputs,
measObj = measurement,
netObj = network,
solver = "lpSolve",
timelimit = 60,
dir_name = "./test_model1/test2/",
threads = 1,
betaWeight = 0.1)
expect_length(result_actual, 4)
expect_named(result_actual,expected = c("weightedSIF",
"nodesAttributes",
"sifAll",
"attributesAll"))
expect_type(result_actual,"list")
expect_named( result_actual$weightedSIF,expected = c( "Node1","Sign",
"Node2", "Weight") )
expect_named( result_actual$nodesAttributes,expected = c( "Node",
"NodeType",
"ZeroAct","UpAct",
"DownAct","AvgAct"))
expect_type( result_actual$sifAll,"list")
expect_type( result_actual$attributesAll,"list")
# Quantitative checks related to the case study 0 with LPsolve (1 solution expected)
# nodesAttributes
expect_equal(nrow(result_actual$nodesAttributes), 4)
expect_equal(sum(result_actual$nodesAttributes$AvgAct), 300)
expect_equal(sum(result_actual$nodesAttributes$DownAct), 0)
expect_equal(sum(result_actual$nodesAttributes$UpAct), 300)
expect_equal(sum(result_actual$nodesAttributes$ZeroAct), 100)
# weightedSIF
expect_equal(nrow(result_actual$weightedSIF), 4)
expect_equal(sum(result_actual$weightedSIF$Weight),200)
# sifAll
expect_length(result_actual$sifAll,1)
expect_true(nrow(result_actual$sifAll[[1]])==2)
# attributesAll
expect_length(result_actual$attributesAll,1)
expect_true(sum(result_actual$attributesAll[[1]]$Activity)==3)
})
# plotPKN(network, inputs, measurement)
# plotSolution(result_actual,1,inputs, measurement)
### Model 1: minimalist chain model with 3 solutions ---------------------------
# With inhibitory edge
# Note: LP solve will find only 1.
# plotSolution(result_actual,1,inputs, measurement)
test_that("LPsolve, check model1 with inhibitory edge for LP solve", {
# small chain model
inputs = data.frame(I1 = 1)
measurement = data.frame(M1 = -1)
network = rbind(inter("I1", 1, "N1"),
inter("I1", 1, "N2"),
inter("N2", 1, "M1"),
inter("N1", -1, "M1"))
# obtain actual result using LP solve
result_actual = runCARNIVAL(inputObj = inputs,
measObj = measurement,
netObj = network,
solver = "lpSolve",
timelimit = 60,
dir_name = "./test_model1/test3/",
threads = 1,
betaWeight = 0.1)
# nodesAttributes
expect_true(nrow(result_actual$nodesAttributes)== 4)
attr = result_actual$nodesAttributes
attr <- attr[match(c("I1","M1","N1","N2"),attr$Node),]
expect_equal(attr$AvgAct, c(100,-100,100,0))
expect_equal(attr$DownAct, c(0,100,0,0))
expect_equal(attr$UpAct, c(100,0,100,0))
expect_equal(attr$ZeroAct, c(0,0,0,100))
# weightedSIF
expect_true(nrow(result_actual$weightedSIF)== 4)
expect_equal(sum(result_actual$weightedSIF$Weight),200)
# sifAll
expect_length(result_actual$sifAll,1)
expect_true(nrow(result_actual$sifAll[[1]])==2)
# attributesAll
expect_length(result_actual$attributesAll,1)
expect_true(sum(result_actual$attributesAll[[1]]$Activity)==1)
expect_true(sum(abs(result_actual$attributesAll[[1]]$Activity))==3)
})
### Model 2: chain model ------------------------------------
test_that("lpSolve, long-chain alternating signs", {
# small chain model
inputs = data.frame(I1 = 1)
measurement = data.frame(M1 = 1)
network = rbind(inter("I1", 1, "N1"),
inter("N1", -1, "N2"),
inter("N2", 1, "N3"),
inter("N3", -1, "M1"))
# obtain actual results
result_actual = runCARNIVAL(inputObj = inputs,
measObj = measurement,
netObj = network,
solver = "lpSolve",
timelimit = 60,
dir_name = "./test_model1/test4/",
threads = 1,
betaWeight = 0.1)
# plotPKN(network, inputs, measurement)
# plotSolution(result_actual,1,inputs, measurement)
# nodesAttributes
expect_true(nrow(result_actual$nodesAttributes)== 5)
attr = result_actual$nodesAttributes
attr <- attr[match(c("I1","M1","N1","N2","N3"),attr$Node),]
expect_equal(attr$AvgAct, c(100,100,100,-100,-100))
expect_equal(attr$DownAct, c(0,0,0,100,100))
expect_equal(attr$UpAct, c(100,100,100,0,0))
expect_equal(attr$ZeroAct, c(0,0,0,0,0))
# weightedSIF
expect_true(nrow(result_actual$weightedSIF)== 4)
expect_true(sum(result_actual$weightedSIF$Weight)==400)
# sifAll
expect_length(result_actual$sifAll,1)
expect_true(nrow(result_actual$sifAll[[1]])==4)
# attributesAll
expect_length(result_actual$attributesAll,1)
expect_true(sum(result_actual$attributesAll[[1]]$Activity)==1)
expect_true(sum(abs(result_actual$attributesAll[[1]]$Activity))==5)
})
### Model 3: 2 inputs - 2 outputs ------------------------------------
# small chain
test_that("lpSolve, 2 input, 2 output, negative edges", {
inputs = data.frame(I1 = 1, I2 = -1)
measurement = data.frame(M1 = -1, M2 = -1)
network = rbind(inter("I1", 1, "N1"),
inter("I2", 1, "N1"),
inter("N1", 1, "N2"),
inter("N2", -1, "N3"),
inter("N3", 1, "M1"),
inter("N3", 1, "M2"))
# obtain actual reesult
result_actual = runCARNIVAL(inputObj = inputs,
measObj = measurement,
netObj = network,
solver = "lpSolve",
timelimit = 60,
dir_name = "./test_model1/test5",
threads = 1,
betaWeight = 0)
# plotPKN(network, inputs, measurement)
# plotSolution(result_actual,1,inputs, measurement)
# nodesAttributes
expect_equal(nrow(result_actual$nodesAttributes), 7)
attr = result_actual$nodesAttributes
attr <- attr[match(c("I1","I2","M1","M2","N1","N2","N3"),attr$Node),]
expect_equal(attr$AvgAct, c(100,-100,-100,-100,100,100,-100))
expect_equal(attr$DownAct, c(0,100,100,100,0,0,100))
expect_equal(attr$UpAct, c(100,0,0,0,100,100,0))
expect_equal(attr$ZeroAct, c(0,0,0,0,0,0,0))
# weightedSIF
expect_equal(nrow(result_actual$weightedSIF), 6)
expect_equal(sum(result_actual$weightedSIF$Weight), 500)
# sifAll
expect_length(result_actual$sifAll,1)
expect_true(nrow(result_actual$sifAll[[1]])==5)
# attributesAll
expect_length(result_actual$attributesAll,1)
expect_equal(sum(result_actual$attributesAll[[1]]$Activity),-1)
expect_equal(sum(abs(result_actual$attributesAll[[1]]$Activity)),7)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.