#Copyright © 2016 RTE Réseau de transport d’électricité
#' Compute economic surplus
#'
#' This function computes the economic surplus for the consumers, the producers
#' and the global surplus of an area.
#'
#' @param x
#' an object of class "antaresDataList" created with the function
#' \code{readAntares}. It has to contain some areas and all the links that are
#' connected to these areas. Moreover it needs to have a hourly time step and detailed results.
#' @param timeStep
#' Desired time step for the result.
#' @param synthesis
#' If TRUE, average surpluses are returned. Else the function returns surpluses
#' per Monte-Carlo scenario.
#' @param groupByDistrict
#' If TRUE, results are grouped by district.
#' @param hurdleCost
#' If TRUE, HURDLE COST will be removed from congestionFees.
#' @param opts opts
#'
#' @return
#' A data.table with the following columns:
#' \item{area}{Name of the area.}
#' \item{timeId}{timeId and other time columns.}
#' \item{consumerSurplus}{The surplus of the consumers of some area.
#'
#' formula = (unsuppliedCost[area] - `MRG. PRICE`) * LOAD}
#' \item{producerSurplus}{
#' The surplus of the producers of some area.
#'
#' formula = `MRG. PRICE` * production - `OP. COST`
#'
#' Production includes "NUCLEAR", "LIGNITE", "COAL", "GAS", "OIL", "MIX. FUEL",
#' "MISC. DTG", "H. STOR", "H. ROR", "WIND", "SOLAR" and "MISC. NDG"
#' }
#' \item{rowBalanceSurplus}{
#' Surplus of the ROW balance.
#'
#' Formula: `MRG. PRICE` * `ROW BAL.`
#' }
#' \item{storageSurplus}{
#' Surplus created by storage/flexibility areas.
#'
#' formula = storage * x$areas$`MRG. PRICE`
#' }
#' \item{congestionFees}{
#' The congestion fees of a given area. It equals to half
#' the congestion fees of the links connected to that area.
#'
#' formula = (congestionFees-hurdleCost) / 2
#' }
#' \item{globalSurplus}{
#' Sum of the consumer surplus, the producer surplus and the congestion fees.
#'
#' formula = consumerSurplus + producerSurplus + storageSurplus + congestionFees + rowBalanceSurplus}
#'
#' @examples
#' \dontrun{
#' showAliases("surplus")
#'
#' mydata <- readAntares(select="surplus")
#' surplus(mydata)
#'
#' surplus(mydata, synthesis = TRUE)
#' surplus(mydata, synthesis = TRUE, groupByDistrict = TRUE)
#' }
#'
#'@export
#'
surplus <- function(x, timeStep = "annual", synthesis = FALSE, groupByDistrict = FALSE, hurdleCost = TRUE, opts = NULL) {
prodVars <- setdiff(pkgEnv$production, "PSP")
x <- .checkAttrs(x, timeStep = "hourly", synthesis = FALSE)
x <- .checkColumns(x, list(areas = c("LOAD", "MRG. PRICE", "OP. COST", "PSP", "ROW BAL."),
links = "CONG. FEE (ALG.)"))
if(is.null(opts)){
opts <- simOptions(x)
}
# Check that necessary links are present in the object
areas <- unique(x$areas$area)
vnodes <- unlist(attr(x, "virtualNodes"))
neededLinks <- getLinks(areas, exclude = vnodes, opts = opts)
links <- unique(x$links$link)
missingLinks <- setdiff(neededLinks, links)
if (length(missingLinks) > 0) stop("The following links are needed but missing: ",
paste(missingLinks, collapse = ", "))
# Compute total production of each area
# For now, we had to the direct production of an area. We add the production of
# the virtual nodes connected to it.
allProdVars <- c(prodVars, paste0(prodVars, "_virtual"))
allProdVars <- intersect(allProdVars, names(x$areas))
production <- rowSums(x$areas[, allProdVars, with = FALSE])
# Read unsupplied energy costs
# unsuppliedCost is a named vector. Names are area names and values are the
# the unsupplied costs of the corresponding areas
unsuppliedCost <- opts$energyCosts$unserved
# consumer, producer surplus and row balance surplus
idColsA <- .idCols(x$areas)
res <- x$areas[,append(mget(idColsA),
.(consumerSurplus = (unsuppliedCost[area] - `MRG. PRICE`) * LOAD,
producerSurplus = `MRG. PRICE` * production - `OP. COST`,
rowBalanceSurplus = `MRG. PRICE` * `ROW BAL.`))]
# Compute surplus of storage/flexibility
if (is.null(vnodes)) {
storageVars <- "PSP"
} else {
storageVars <- intersect(colnames(x$areas), unique(c("PSP", attr(x, "virtualNodes")$storageFlexibility)))
}
storage <- rowSums(x$areas[,storageVars, with = FALSE])
res[, storageSurplus := storage * x$areas$`MRG. PRICE`]
# Congestion fees
links <- tstrsplit(neededLinks, split = " - ")
links <- data.table(link = neededLinks, from = links[[1]], to = links[[2]])
links <- rbind(links[, .(area = from, link)], links[, .(area = to, link)])
links <- links[area %in% areas]
idColsL <- .idCols(x$links)
if (hurdleCost){
`HURDLE COST` <- "nothing"
cong <- merge(links,
x$links[, append(mget(idColsL), .(congestionFees = `CONG. FEE (ALG.)` - `HURDLE COST`))],
by = "link", allow.cartesian = TRUE)
}else {
cong <- merge(links,
x$links[, append(mget(idColsL), .(congestionFees = `CONG. FEE (ALG.)`))],
by = "link", allow.cartesian = TRUE)
}
cong[, link := NULL]
cong <- cong[, .(congestionFees = sum(congestionFees) / 2), keyby = idColsA]
res <- merge(res, cong, by = idColsA)
# Global surplus
res[, globalSurplus := consumerSurplus + producerSurplus + storageSurplus +
congestionFees + rowBalanceSurplus]
if (groupByDistrict) res <- .groupByDistrict(res, opts)
# Set correct attributes to the result
res <- .addClassAndAttributes(res, FALSE, "hourly", opts, type = "surplus")
res <- changeTimeStep(res, timeStep)
if (synthesis) res <- synthesize(res)
res
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.