#' Generalized BLOSUM and PAM Matrix-Derived Descriptors
#'
#' Generalized BLOSUM and PAM Matrix-Derived Descriptors
#'
#' This function calculates the generalized BLOSUM matrix-derived descriptors.
#' For users' convenience, \code{Rcpi} provides the
#' BLOSUM45, BLOSUM50, BLOSUM62, BLOSUM80, BLOSUM100,
#' PAM30, PAM40, PAM70, PAM120, and PAM250 matrices
#' for the 20 amino acids to select.
#'
#' @param x A character vector, as the input protein sequence.
#' @param submat Substitution matrix for the 20 amino acids. Should be one of
#' \code{AABLOSUM45}, \code{AABLOSUM50}, \code{AABLOSUM62},
#' \code{AABLOSUM80}, \code{AABLOSUM100}, \code{AAPAM30},
#' \code{AAPAM40}, \code{AAPAM70}, \code{AAPAM120}, \code{AAPAM250}.
#' Default is \code{'AABLOSUM62'}.
#' @param k Integer. The number of selected scales (i.e. the first
#' \code{k} scales) derived by the substitution matrix.
#' This could be selected according to the printed relative
#' importance values.
#' @param lag The lag parameter. Must be less than the amino acids.
#' @param scale Logical. Should we auto-scale the substitution matrix
#' (\code{submat}) before doing eigen decomposition? Default is
#' \code{TRUE}.
#' @param silent Logical. Whether we print the relative importance of
#' each scales (diagnal value of the eigen decomposition result matrix B)
#' or not.
#' Default is \code{TRUE}.
#' @return A length \code{lag * p^2} named vector,
#' \code{p} is the number of scales selected.
#'
#' @export extractPCMBLOSUM
#'
#' @references
#' Georgiev, A. G. (2009).
#' Interpretable numerical descriptors of amino acid space.
#' Journal of Computational Biology, 16(5), 703--723.
#'
#' @examples
#' x = readFASTA(system.file('protseq/P00750.fasta', package = 'Rcpi'))[[1]]
#' blosum = extractPCMBLOSUM(x, submat = 'AABLOSUM62', k = 5, lag = 7, scale = TRUE, silent = FALSE)
#'
extractPCMBLOSUM = function (x, submat = 'AABLOSUM62', k, lag,
scale = TRUE, silent = TRUE) {
if (checkProt(x) == FALSE) stop('x has unrecognized amino acid type')
k = min(k, 20)
submat = get(submat)
if (scale) submat = scale(submat)
eig = eigen(submat)
A = eig$vectors
B = eig$values
rownames(A) = rownames(submat)
# the equation: submat == A %*% diag(B) %*% t(A)
accmat = matrix(0, k, nchar(x))
x.split = strsplit(x, '')[[1]]
for (i in 1:nchar(x)) {
accmat[, i] = A[x.split[i], 1:k]
}
result = acc(accmat, lag)
if (!silent) {
cat('Relative importance of all the possible 20 scales:\n')
print(B)
}
return(result)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.