library(clustifyr)
library(tidyverse)
library(usethis)
library(Seurat)
download.file("https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE124494&format=file",
destfile = "GSE124494_RAW.tar")
untar("GSE124494_RAW.tar")
samples <- list.files(pattern = "mtx.gz") %>% str_remove("_matrix.mtx.gz")
ml <- list()
for (s in samples) {
temp <- Matrix::readMM(paste0(path, s, "_matrix.mtx.gz"))
a <- read_tsv(paste0(path, s, "_barcodes.tsv.gz"),
col_names = F)
b <- read_tsv(paste0(path, s, "_genes.tsv.gz"),
col_names = F)
colnames(temp) <- a$X1
rownames(temp) <- b$X2
temp <- CreateSeuratObject(counts = temp, project = s, min.cells = 3, min.features = 200)
temp[["percent.mt"]] <- PercentageFeatureSet(temp, pattern = "^MT-")
temp <- NormalizeData(temp)
temp <- FindVariableFeatures(temp, selection.method = "vst", nfeatures = 2000)
temp <- ScaleData(temp, features = rownames(temp@assays$RNA@counts))
ml[[s]] <- temp
}
vars <- c()
for (element in ml) {
vars <- c(vars, element@assays$RNA@var.features[1:1000])
}
vars <- names(table(vars))[table(vars) >= 2]
for (element in ml) {
vars <- intersect(vars, rownames(element@assays$RNA@data))
}
anchors <- FindIntegrationAnchors(object.list = ml, dims = 1:30, anchor.features = vars)
combined <- IntegrateData(anchorset = anchors, dims = 1:30)
DefaultAssay(combined) <- "integrated"
combined <- ScaleData(combined, verbose = FALSE)
combined <- RunPCA(combined, npcs = 30, verbose = FALSE)
combined <- RunUMAP(combined, reduction = "pca", dims = 1:30)
combined <- FindNeighbors(combined, reduction = "pca", dims = 1:30)
combined <- FindClusters(combined, resolution = 0.5)
saveRDS(combined, "LECcomb.rds")
DimPlot(combined, label = T)
combined2 <- combined %>%
RenameIdents(
"0" = "LEC1", #
"1" = "LEC3", #
"2" = "LEC3", #
"3" = "LEC2", #
"4" = "LEC4", #
"5" = "LEC1", #
"6" = "LEC1", #
"7" = "BEC", #
"8" = "SC", #
"9" = "LEC5", #
"10" = "LEC6", #
"11" = "LEC5", #
"12" = "tossed_inflammatory ",
"13" = "CD34+_SC", #
"14" = "LEC4", #
"15" = "???",
"16" = "SC" #
)
combined2 <- StashIdent(combined2, "type")
ref_LEC <- object_ref(
combined2,
"type"
)
# note that in the data gene names are fully upper case, unusual for mouse
usethis::use_data(ref_LEC, compress = "xz", overwrite = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.