#' @title Fit group regression for specific quantile and degree
#' @param x specifies a column of the grid matrix of tau and d.
#' @param InputData contains the expression values, sequencing depths to fit
#' the group regression, and the quantile used in the individual
#' gene regression for grouping.
#' @description This is an internal fitting of the group regression. For a
#' single combination of possible tau and d values the group regression is
#' fist fit, then predicted values are obtained and regressed against the
#' original sequencing depths. The estimates slope is passed back to the
#' SCnorm_fit() function.
#' @return estimated count-depth relationship of predicted values for one
#' value of tau and degree.
#' @author Rhonda Bacher
#' @importFrom data.table data.table
GetTD <- function(x, InputData) {
TauGroup <- InputData[[4]][x,1]
DG <- InputData[[4]][x,2]
O <- InputData[[1]]
Y <- InputData[[2]]
SeqDepth <- InputData[[3]]
Tau <- InputData[[5]]
ditherFlag <- InputData[[6]]
polyX <- try(poly(O, degree = DG, raw = FALSE), silent=TRUE)
if(!is.null(dim(polyX))){
Xmat <- data.table::data.table(model.matrix( ~ polyX ))
polydata <- data.frame(Y = Y, Xmat = Xmat[,-1])
if(ditherFlag == TRUE) {
rqfit <- try(quantreg::rq(dither(Y, type="symmetric", value=.01) ~ .,
data = polydata, na.action = na.exclude, tau = TauGroup,
method="fn"), silent=TRUE)
} else {
rqfit <- try(quantreg::rq(Y ~ ., data = polydata, na.action = na.exclude,
tau = TauGroup, method="fn"), silent=TRUE)
}
if(!methods::is(rqfit, "try-error")){
revX <- data.frame(predict(polyX, SeqDepth))
colnames(revX) <- colnames(polydata[-1])
pdvalsrq <- predict(rqfit, newdata=data.frame(revX))
names(pdvalsrq) <- colnames(SeqDepth)
if (min(pdvalsrq) > 0) {
S <- quantreg::rq(pdvalsrq ~ SeqDepth, tau = Tau)$coef[2]
} else {S <- -50}
} else {S <- -50}
} else {S <- -50}
return(as.numeric(S))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.