test_that("aggregation: medianPolish", {
## numerical example taken from ?stats::medpolish
x <- rbind(c(14,15,14),
c( 7, 4, 7),
c( 8, 2,10),
c(15, 9,10),
c( 0, 2, 0))
colnames(x) <- LETTERS[1:3]
rownames(x) <- paste0("pep", 1:5)
x2 <- medianPolish(x)
expect_is(x2, "numeric")
expect_identical(length(x2), ncol(x))
mp <- stats::medpolish(x, trace.iter = FALSE)
## Check decomposition
expect_identical(x, mp$overall + outer(mp$row, mp$col, "+") + mp$residuals)
expect_identical(names(x2), colnames(x))
})
test_that("aggregation: robustSummary", {
## numeric example taken from `MSnbase::combineFeatures` on
## `log(filterNA(msnset), 2)`
x <- structure(c(10.3961935744407, 10.6379251053134,
7.52885076885599, 11.1339832690524,
11.5154097311056, 7.69906817878979,
11.9394664781386, 12.2958526883634,
9.00858488668671, 12.9033445520186,
13.3390344671153, 9.75719265786117),
.Dim = 3:4,
.Dimnames = list(c("X1", "X52", "X53"),
c("iTRAQ4.114", "iTRAQ4.115",
"iTRAQ4.116", "iTRAQ4.117")))
x2_expected <- c(iTRAQ4.114 = 9.52098981620336, iTRAQ4.115 = 10.1620299826269,
iTRAQ4.116 = 11.0813013510629, iTRAQ4.117 = 11.999857225665)
x2 <- robustSummary(x)
expect_equal(x2, x2_expected)
})
test_that("aggregation: robustSummary", {
x <- structure(c(10.3961935744407, 10.6379251053134,
7.52885076885599, 11.1339832690524,
11.5154097311056, 7.69906817878979,
11.9394664781386, 12.2958526883634,
9.00858488668671, 12.9033445520186,
13.3390344671153, 9.75719265786117),
.Dim = 3:4)
expect_error(robustSummary(x), "colnames must not be empty")
})
test_that("aggregation: aggregate_by_vector", {
## Numeric example taken from `MSnbase::combineFeatures` on
## `log(filterNA(msnset), 2)`
x <- structure(c(3.37798349666944, 4.10151322208566, 3.81790550688852,
3.68373564094019, 3.41114487991947, 2.91242966348861, 1.97017675008189,
3.47689791527908, 4.04720220698125, 3.82566260214081, 3.57800373068237,
3.525493839628, 2.94468384643243, 1.98947385475541, 3.57766646528063,
3.94290011925067, 3.83197127627519, 3.48680275001825, 3.6200998807866,
3.17130049812522, 1.93779683012642, 3.68967315613391, 3.84557183862662,
3.82393074128306, 3.33967874492785, 3.73758233712817, 3.28646611488044,
1.92996581207855),
.Dim = c(7L, 4L),
.Dimnames = list(c("X1", "X27", "X41", "X47", "X52",
"X53", "X55"),
c("iTRAQ4.114", "iTRAQ4.115",
"iTRAQ4.116", "iTRAQ4.117")))
## Different ways to provide INDEX
k_char <- c("B", "E", "X", "E", "B", "B", "E")
k_fact <- factor(k_char)
k_fact2 <- factor(k_char, levels = c("X", "E", "B"))
## Harmonise row names for comparison - these can change based on
## the different levels.
same_row_names <- c("B", "E", "X")
## aggregate: robustSummary
x2_robust_expected <-
structure(c(3.23385268002584, 3.27016773304649,
3.81790550688852, 3.33557123434545,
3.20489326413968, 3.82566260214081,
3.45635561473081, 3.12249989979845,
3.83197127627519, 3.57124053604751,
3.01422698197221, 3.82393074128306),
.Dim = 3:4,
.Dimnames = list(c("B", "E", "X"),
c("iTRAQ4.114", "iTRAQ4.115",
"iTRAQ4.116", "iTRAQ4.117")))
## Test for different INDEX types and order
expect_equal(x2_robust_expected[same_row_names, ],
aggregate_by_vector(x, k_char, robustSummary)[same_row_names, ])
expect_equal(x2_robust_expected[same_row_names, ],
aggregate_by_vector(x, k_fact, robustSummary)[same_row_names, ])
expect_equal(x2_robust_expected[same_row_names, ],
aggregate_by_vector(x, k_fact2, robustSummary)[same_row_names, ])
## aggregate: medianPolish
x2_medpolish_expected <-
structure(c(3.36717083720277, 3.63886529932001,
3.81790550688852, 3.47689791527908,
3.57800373068237, 3.82566260214081,
3.57766646528063, 3.48680275001825,
3.83197127627519, 3.69360829441147,
3.38292391586096, 3.82393074128306),
.Dim = 3:4,
.Dimnames = list(c("B", "E", "X"),
c("iTRAQ4.114", "iTRAQ4.115",
"iTRAQ4.116", "iTRAQ4.117")))
## Test for different INDEX types and order
expect_equal(x2_medpolish_expected[same_row_names, ],
aggregate_by_vector(x, k_char, medianPolish)[same_row_names, ])
expect_equal(x2_medpolish_expected[same_row_names, ],
aggregate_by_vector(x, k_fact, medianPolish)[same_row_names, ])
expect_equal(x2_medpolish_expected[same_row_names, ],
aggregate_by_vector(x, k_fact2, medianPolish)[same_row_names, ])
## aggregate: sum
x2_sum_expected <-
structure(c(9.70155804007753, 9.75542561310774,
3.81790550688852, 9.94707560133951,
9.61467979241903, 3.82566260214081,
10.3690668441924, 9.36749969939534,
3.83197127627519, 10.7137216081425,
9.11521639563303, 3.82393074128306),
.Dim = 3:4,
.Dimnames = list(c("B", "E", "X"),
c("iTRAQ4.114", "iTRAQ4.115",
"iTRAQ4.116", "iTRAQ4.117")))
## Test for different INDEX types and order
expect_equal(x2_sum_expected[same_row_names, ],
aggregate_by_vector(x, k_char, colSums)[same_row_names, ])
expect_equal(x2_sum_expected[same_row_names, ],
aggregate_by_vector(x, k_fact, colSums)[same_row_names, ])
expect_equal(x2_sum_expected[same_row_names, ],
aggregate_by_vector(x, k_fact2, colSums)[same_row_names, ])
## Test HDF5Matrix compatibility
if (requireNamespace("HDF5Array", quietly = TRUE)) {
## Data in HDF5
tmpf <- paste0(tempdir(), "/xhdf5")
xhdf5 <- HDF5Array::writeHDF5Array(x, tmpf, with.dimnames = TRUE)
## robustSummary
hdf5out <- aggregate_by_vector(xhdf5, k_char, robustSummary)
expect_true(inherits(hdf5out, "HDF5Matrix"))
expect_equal(x2_robust_expected[same_row_names, ],
as.matrix(hdf5out)[same_row_names, ])
hdf5out <- aggregate_by_vector(xhdf5, k_fact, robustSummary)
expect_equal(x2_robust_expected[same_row_names, ],
as.matrix(hdf5out)[same_row_names, ])
hdf5out <- aggregate_by_vector(xhdf5, k_fact2, robustSummary)
expect_equal(x2_robust_expected[same_row_names, ],
as.matrix(hdf5out)[same_row_names, ])
## medianPolish
hdf5out <- aggregate_by_vector(xhdf5, k_char, medianPolish)
expect_true(inherits(hdf5out, "HDF5Matrix"))
expect_equal(x2_medpolish_expected[same_row_names, ],
as.matrix(hdf5out)[same_row_names, ])
hdf5out <- aggregate_by_vector(xhdf5, k_fact, medianPolish)
expect_equal(x2_medpolish_expected[same_row_names, ],
as.matrix(hdf5out)[same_row_names, ])
hdf5out <- aggregate_by_vector(xhdf5, k_fact2, medianPolish)
expect_equal(x2_medpolish_expected[same_row_names, ],
as.matrix(hdf5out)[same_row_names, ])
## Matrix::colSums
hdf5out <- aggregate_by_vector(xhdf5, k_char, Matrix::colSums)
expect_true(inherits(hdf5out, "HDF5Matrix"))
expect_equal(x2_sum_expected[same_row_names, ],
as.matrix(hdf5out)[same_row_names, ])
hdf5out <- aggregate_by_vector(xhdf5, k_fact, Matrix::colSums)
expect_equal(x2_sum_expected[same_row_names, ],
as.matrix(hdf5out)[same_row_names, ])
hdf5out <- aggregate_by_vector(xhdf5, k_fact2, Matrix::colSums)
expect_equal(x2_sum_expected[same_row_names, ],
as.matrix(hdf5out)[same_row_names, ])
## Remove file
unlink(tmpf)
}
})
test_that("aggregation: colCounts", {
## Simple case with NAs
m <- matrix(c(1, NA, 2, 3, NA, NA, 4, 5, 6),
nrow = 3)
expect_identical(colCounts(m), c(2, 1, 3))
## No NAs
m <- matrix(rnorm(30), nrow = 3)
expect_identical(colCounts(m), rep(3, 10))
## NAs along diagonal
m <- matrix(rnorm(25), nrow = 5)
diag(m) <- NA
expect_identical(colCounts(m), rep(4, 5))
## Only NAs
m <- matrix(NA, ncol = 5, nrow = 3)
expect_identical(colCounts(m), rep(0, 5))
## NaN instead of NA
m <- matrix(rnorm(25), nrow = 5)
m[1,1] <- NaN
expect_identical(colCounts(m), c(4, rep(5, 4)))
## NA and Inf
m[2,2] <- Inf
expect_identical(colCounts(m), c(4, rep(5, 4)))
## Test HDF5Matrix compatibility
if (requireNamespace("HDF5Array", quietly = TRUE)) {
## Test HDF5Matrix compatibility
tmpf <- paste0(tempdir(), "/mhdf5")
m <- matrix(c(1, NA, 2, 3, NA, NA, 4, 5, 6),
nrow = 3)
mhdf5 <- HDF5Array::writeHDF5Array(m, tmpf, with.dimnames = TRUE)
expect_identical(colCounts(mhdf5), c(2, 1, 3))
unlink(tmpf)
}
})
test_that("aggregate_by_matrix works", {
## numerical example taken from ?stats::medpolish
x <- rbind(c(14,15,14),
c( 7, 4, 7),
c( 8, 2,10),
c(15, 9,10),
c( 0, 2, 0))
colnames(x) <- paste0("S", 1:3)
rownames(x) <- paste0("pep", 1:5)
## aggregation index
k <- paste0("Prot", rep(1:2, c(2, 3)))
## adjacency matrix
adj <- matrix(c(1, 1, 0, 0, 0,
0, 0, 1, 1, 1),
ncol = 2)
rownames(adj) <- rownames(x)
colnames(adj) <- unique(k)
## aggregation by sum
av1 <- aggregate_by_vector(x, k, colSums)
am1 <- aggregate_by_matrix(x, adj, colSumsMat)
expect_identical(av1, am1)
## aggregation by mean
av2 <- aggregate_by_vector(x, k, colMeans)
am2 <- aggregate_by_matrix(x, adj, colMeansMat)
expect_identical(av2, am2)
## Test HDF5Matrix compatibility
if (requireNamespace("HDF5Array", quietly = TRUE)) {
## Data in HDF5
tmpf <- paste0(tempdir(), "/mhdf5")
xhdf5 <- HDF5Array::writeHDF5Array(x, tmpf, with.dimnames = TRUE)
## colSumsMat
amhdf5 <- aggregate_by_matrix(xhdf5, adj, colSumsMat)
expect_true(inherits(amhdf5, "HDF5Matrix"))
expect_identical(am1, as.matrix(amhdf5))
## colMeansMat
amhdf5 <- aggregate_by_matrix(xhdf5, adj, colMeansMat)
expect_true(inherits(amhdf5, "HDF5Matrix"))
expect_identical(am2, as.matrix(amhdf5))
## Remove file
unlink(tmpf)
}
})
test_that("aggregate_by_matrix works with NAs", {
## numerical example taken from ?stats::medpolish
x <- rbind(c(14,15,14),
c( 7, 4, 7),
c( 8, 2,10),
c(15, 9,10),
c( 0, 2, 0))
colnames(x) <- paste0("S", 1:3)
rownames(x) <- paste0("pep", 1:5)
x[1, 1] <- x[4, 2] <- NA
## aggregation index
k <- paste0("Prot", rep(1:2, c(2, 3)))
## adjacency matrix
adj <- matrix(c(1, 1, 0, 0, 0,
0, 0, 1, 1, 1),
ncol = 2)
rownames(adj) <- rownames(x)
colnames(adj) <- unique(k)
## aggregation by sum, na.rm = FALSE
av1 <- aggregate_by_vector(x, k, colSums)
am1 <- aggregate_by_matrix(x, adj, colSumsMat)
expect_identical(av1, am1)
## aggregation by mean, na.rm = FALSE
av2 <- aggregate_by_vector(x, k, colMeans)
am2 <- aggregate_by_matrix(x, adj, colMeansMat)
expect_identical(av2, am2)
## aggregation by sum, na.rm = TRUE
av3 <- aggregate_by_vector(x, k, colSums, na.rm = TRUE)
am3 <- aggregate_by_matrix(x, adj, colSumsMat, na.rm = TRUE)
expect_identical(av3, am3)
## aggregation by mean, na.rm = TRUE
av4 <- aggregate_by_vector(x, k, colMeans, na.rm = TRUE)
am4 <- aggregate_by_matrix(x, adj, colMeansMat, na.rm = TRUE)
expect_identical(av4, am4)
## Test HDF5Matrix compatibility
if (requireNamespace("HDF5Array", quietly = TRUE)) {
## Data in HDF5
tmpf <- paste0(tempdir(), "/mhdf5")
xhdf5 <- HDF5Array::writeHDF5Array(x, tmpf, with.dimnames = TRUE)
## aggregation by sum, na.rm = FALSE
amhdf5 <- aggregate_by_matrix(xhdf5, adj, colSumsMat)
expect_identical(am1, as.matrix(amhdf5))
## aggregation by mean, na.rm = FALSE
amhdf5 <- aggregate_by_matrix(xhdf5, adj, colMeansMat)
expect_identical(am2, as.matrix(amhdf5))
## aggregation by sum, na.rm = TRUE
amhdf5 <- aggregate_by_matrix(xhdf5, adj, colSumsMat, na.rm = TRUE)
expect_identical(am3, as.matrix(amhdf5))
## aggregation by mean, na.rm = TRUE
amhdf5 <- aggregate_by_matrix(xhdf5, adj, colMeansMat, na.rm = TRUE)
expect_identical(am4, as.matrix(amhdf5))
## Remove file
unlink(tmpf)
}
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.