#' @title Non-partial correlation analysis
#' @description A method that integrates differential expression (DE) analysis and differential
#' network (DN) analysis to select biomarker candidates for cancer studies. non_partial_cor is
#' a one step function for users to perform the typical correlation analysis. No pre-processing
#' step is required.
#' @param data This is a p*n dataframe that contains the expression levels for all biomolecules and samples.
#' @param class_label This is a 1*n dataframe that contains the class label with 0 for group 1 and 1 for group 2.
#' @param id This is a p*1 dataframe that contains the ID for each biomolecule.
#' @param method This is a character string indicating which correlation method is to use. The
#' options are either "pearson" as the default or "spearman".
#' @param p_val This is optional. It is a p*1 dataframe that contains the p-value for each biomolecule from DE analysis.
#' @param permutation This is a positive integer representing the desired number of permutations.
#' The default is 1000.
#' @param permutation_thres This is a integer representing the threshold for the permutation test.
#' The default is 0.05 to achieve 95 percent confidence.
#' @param fdr This is a boolean value indicating whether to apply multiple testing correction (TRUE)
#' or not (FALSE). The default is TRUE. However, if users find the output network is too sparse
#' even after relaxing the permutation_thres, it's probably a good idea to turn off the multiple testing correction.
#' @examples non_partial_cor(data = Met_GU, class_label = Met_Group_GU, id = Met_name_GU,
#' method = "pearson", p_val = pvalue_M_GU, permutation = 1000,
#' permutation_thres = 0.05, fdr = TRUE)
#' @return A list containing an activity score dataframe with "ID", "P_value", "Node_Degree" and
#' "Activity_Score" as columns and a differential network dataframe with the binary and the
#' weight connection values.
#' @import devtools
#' @importFrom glasso glasso
#' @importFrom stats qnorm cor quantile var sd glm
#' @importFrom graphics abline title plot lines
#' @export
non_partial_cor <- function(data = NULL, class_label = NULL, id = NULL, method = "pearson",
p_val = NULL, permutation = 1000, permutation_thres = 0.05, fdr = TRUE){
data_bind <- rbind(data, class_label)
# Group 1: p*n1
raw_group_1 <- data_bind[,data_bind[nrow(data_bind),] == 0][1:(nrow(data_bind) - 1),]
# Group 2: p*n2
raw_group_2 <- data_bind[,data_bind[nrow(data_bind),] == 1][1:(nrow(data_bind) - 1),]
p <- nrow(raw_group_1)
n_group_1 <- ncol(raw_group_1)
n_group_2 <- ncol(raw_group_2)
# Z-transform the data for group-specific normalization
data_group_1 <- scale(t(raw_group_1)) # Group 1: n1*p
data_group_2 <- scale(t(raw_group_2)) # Group 2: n2*p
cov_group_1 <- var(data_group_1)
cov_group_2 <- var(data_group_2)
# Get the correlation matrix
if(missing(method)){method = "pearson"}
else if(method != "spearman"){method = "pearson"}
# default is pearson correlation
cor <- compute_cor(data_group_1, data_group_2, type_of_cor = method)
cor_group_1 <- cor$Group1
cor_group_2 <- cor$Group2
# # examine the correlation matrix
# thres <- 1e-3
# sum(abs(cor_group_1) > thres)
# cor_group_1[1:10, 1:10]
# sum(abs(cor_group_2) > thres)
# cor_group_2[1:10, 1:10]
# rm(thres)
# Build differential correlation networks
diff <- cor_group_2 - cor_group_1 # from group 1 to group 2
# thres = 1e-3
# sum(abs(diff) > thres)
# diff[1:10, 1:10]
# Permutation test
if(permutation <= 0) {stop("please provide a valid number of permutation (positive integer)")}
else{
m <- as.numeric(permutation)
diff_p <- permutation_cor(m, p, n_group_1, n_group_2, data_group_1, data_group_2,
type_of_cor = method)
## Multiple testing step
# p-value for edges
pvalue_edge <- compute_pvalue_edge(p, diff, diff_p, m)
# fdr to adjust multiple testing
if(fdr == TRUE){
pvalue_edge_fdr <- compute_pvalue_edge_fdr(p, pvalue_edge)
}
else{
pvalue_edge_fdr <- pvalue_edge
}
}
rm(m)
# get binary and weight matrix
binary_link <- matrix(0, p, p) # binary connection
binary_link[pvalue_edge_fdr < permutation_thres] <- 1
binary_link[(pvalue_edge_fdr < permutation_thres) & (diff < 0)] <- -1
weight_link <- compute_edge_weights(pvalue_edge_fdr, binary_link)
# binary_link[1:10, 1:10]
# weight_link[1:10, 1:10]
# rowSums(abs(binary_link)) # node degree for differential networks
# rm(diff_p)
# Convert adjacent matrix into edge list
i <- rep(seq_len(nrow(binary_link) - 1), times = (nrow(binary_link)-1):1)
k <- unlist(lapply(2:nrow(binary_link), seq, nrow(binary_link)))
binary_link_value <- binary_link[lower.tri(binary_link)]
weight_link_value <- weight_link[lower.tri(weight_link)]
edge <- cbind("Node1" = i, "Node2" = k, "Binary" = binary_link_value,
"Weight" = weight_link_value)
edge_dn <- edge[which(edge[,3] != 0),]
edge_dn <- as.data.frame(edge_dn)
# Compute p-values
if (is.null(p_val) == TRUE) {
# Calculate p-values using logistic regression if p-values are not provided by users
pvalue <- pvalue_logit(data, class_label, id)
p.value <- pvalue$p.value
row.names(pvalue) <- NULL
} else { # If the p-value matrix is provided
pvalue <- p_val
p.value <- pvalue$p.value # Extract p-values from the table provided
row.names(pvalue) <- NULL
}
# trasfer p-value to z-score
z_score <- abs(qnorm(1 - p.value/2))
# calculate differntial network score
dn_score <- compute_dns(binary_link, z_score)
indeed_df <- cbind(pvalue, rowSums(abs(binary_link)), dn_score)
colnames(indeed_df) <- c("ID", "P_value", "Node_Degree", "Activity_Score")
indeed_df$P_value <- lapply(indeed_df$P_value, round, 3)
indeed_df$Activity_Score <- lapply(indeed_df$Activity_Score, round, 1)
indeed_df <- as.data.frame(lapply(indeed_df, unlist))
# Recopy dataframe with index to help with ighraph formating
indeed_df <- cbind(rownames(indeed_df), data.frame(indeed_df, row.names = NULL))
colnames(indeed_df)[1] <- "Node" # rename the previous index column as "Node"
indeed_df<-indeed_df[order(indeed_df$Activity_Score, decreasing = TRUE), ]
row.names(indeed_df) <- NULL # remove index repeat
# return
result_list <-list(activity_score = indeed_df, diff_network = edge_dn)
return(result_list)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.