## virtual class graphParam to hold parameters to simulate graphs
setClass("graphParam",
representation(p="integer",
labels="character"),
prototype(p=5L,
labels=as.character(1:5)))
## virtual class markedGraphParam to hold parameters to simulate marked graphs
## where a marked graph is a graph with marked vertices
setClass("markedGraphParam",
representation(pI="integer",
pY="integer",
Ilabels="character",
Ylabels="character"),
prototype(pI=1L,
pY=4L,
Ilabels="I1",
Ylabels=paste0("Y", 2:5)))
## class erGraphParam to hold parameters to simulate Erdos-Renyi graphs
setClass("erGraphParam",
contains="graphParam",
representation(m="integer",
prob="numeric"),
prototype(p=5L,
m=5L,
prob=NA_real_,
labels=as.character(1:5)))
## class dRegularGraphParam to hold parameters to simulate d-regular graphs
setClass("dRegularGraphParam",
contains="graphParam",
representation(d="integer",
exclude="integer"),
prototype(p=5L,
d=2L,
exclude=as.integer(NULL),
labels=as.character(1:5)))
## class erMarkedGraphParam to hold parameters to simulate Erdos-Renyi marked graphs
setClass("erMarkedGraphParam",
contains=c("markedGraphParam", "erGraphParam"),
representation(),
prototype(p=5L,
pI=1L,
pY=4L,
Ilabels="I1",
Ylabels=paste0("Y", 2:5),
labels=c("I1", paste0("Y", 2:5)),
m=5L,
prob=NA_real_))
## class dRegularMarkedGraphParam to hold parameters to simulate d-regular marked graphs
setClass("dRegularMarkedGraphParam",
contains=c("markedGraphParam", "dRegularGraphParam"),
representation(),
prototype(p=5L,
pI=1L,
pY=4L,
Ilabels="I1",
Ylabels=paste0("Y", 2:5),
labels=c("I1", paste0("Y", 2:5)),
d=2L,
exclude=as.integer(NULL)))
## class UGgmm to simulate an undirected Gaussian graphical Markov model
setClass("UGgmm",
representation(p="integer",
g="graphBAM",
mean="numeric",
sigma="dspMatrix"),
prototype(p=5L,
g=graphBAM(as.data.frame(matrix(NA, nrow=0, ncol=3,
dimnames=list(NULL, c("from", "to", "weight")))),
nodes=sprintf("X%d", 1:5)),
mean=do.call("names<-", list(rep(0, 5), sprintf("X%d", 1:5))),
sigma=as(as(as(diag(1:5), "dMatrix"), "symmetricMatrix"), "packedMatrix")))
setClass("UGgmmSummary",
representation(model="UGgmm",
density="numeric",
degree="integer",
macor="numeric",
pacor="numeric"))
## class HMgmm to simulate an undirected Gaussian graphical Markov model
setClass("HMgmm",
representation(pI="integer",
pY="integer",
g="graphBAM",
vtype="factor",
dLevels="integer",
a="numeric",
rho="numeric",
sigma="dspMatrix",
mean="environment",
eta2="environment"),
prototype(pI=1L,
pY=4L,
vtype=factor(c("discrete", rep("continuous", 4))),
g={g<- graphBAM(as.data.frame(matrix(NA, nrow=0, ncol=3,
dimnames=list(NULL, c("from", "to", "weight")))),
nodes=c("I01", sprintf("%d", 1:4)))
nodeDataDefaults(g, "type") <- "continuous"
nodeData(g, "I01", "type") <- "discrete"
g},
dLevels=2L,
a=do.call("names<-", list(rep(0, 4), sprintf("Y%d", 1:4))),
rho=0.5,
sigma=as(as(as(diag(1:5), "dMatrix"), "symmetricMatrix"), "packedMatrix"),
mean=new.env(parent=emptyenv()),
eta2=new.env(parent=emptyenv())))
## eta2=do.call("names<-", list(rep(NA, 4), sprintf("Y%d", 1:4)))))
setClass("HMgmmSummary",
representation(model="HMgmm",
density="numeric",
densityIxY="numeric",
densityY="numeric",
degree="integer",
macor="numeric",
pacor="numeric",
a="numeric"))
setOldClass(c("bc", "cross"))
setOldClass("map")
## class eQTLcrossParam to hold parameters to simulate eQTLcross objects
setClass("eQTLcrossParam",
representation(map="map",
type="character",
cis="numeric",
trans="integer",
cisr="numeric",
d2m="numeric",
networkParam="graphParam"))
## class eQTLcross to hold an experimental cross involving genotype markers
## and gene expression profiles with some underlying expression
## quantitative trait loci (eQTL) and some underlying regulatory network between genes
setClass("eQTLcross",
representation(map="map",
genes="matrix",
model="HMgmm",
type="character"))
setClass("eQTLnetworkEstimationParam",
representation(ggData="matrix",
geneticMap="ANY",
physicalMap="ANY",
organism="character",
genome="Seqinfo",
geneAnnotation="GRanges",
geneAnnotationTable="character",
dVars="character"))
setClass("qpGraph",
representation(p="integer",
q="integer",
n="integer",
epsilon="numeric",
g="graphBAM"))
setClass("eQTLnetwork",
representation(geneticMap="ANY",
physicalMap="ANY",
organism="character",
genome="Seqinfo",
geneAnnotation="GRanges",
geneAnnotationTable="character",
dVars="character",
pvaluesG0="dspMatrix",
nrr="dspMatrix",
modelFormula="formula",
rhs="list",
qOrders="integer",
p.value="numeric",
adjustMethod="character",
epsilon="numeric",
alpha="numeric",
qpg="qpGraph"))
## class SsdMatrix to store matrices with sum of squares of deviations (ssd)
## these are dspMatrix objects with an additional slot 'n' indicating the
## sample size from where these ssd matrices were estimated. the main use
## of this extra slot is to inform the user of the sample size when the
## function qpCov() was called with use="complete.obs" on data with missing
## values
setClass("SsdMatrix",
representation(ssd = "dspMatrix",
n = "numeric"),
prototype(ssd=new("dspMatrix"), n=0),
contains = "dspMatrix")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.